Digital Forensics Investigation of the Tesla Autopilot File System

SECURWARE 2022

Kevin Gomez Buquerin^{1,2} and Hans-Joachim Hof¹

¹Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected, and Secure Mobility (C-ECOS)

²Friedrich Alexander University Erlangen Nürnberg

Who am I?

Kevin Gomez Buquerin

I am a PhD student at the Technical University Ingolstadt and Friedrich Alexander University Erlangen Nürnberg in Germany. My main research area is automotive digital forensics. I focus on the implementation of new methods for extraction and analysis of digital evidence in modern and future automotive systems.

Tesla

Figure 1: Tesla Model S [Tesla Website, 2022]

Accidents involving the autopilot

Figure 2: Tesla Model S [Scott J. Engle, 2021]

• Infotainment system,

- Infotainment system,
- Vehicle-to-vehicle systems,

- Infotainment system,
- Vehicle-to-vehicle systems,
- Airbag control unit,

- Infotainment system,
- Vehicle-to-vehicle systems,
- Airbag control unit,
- Telematic control system,

- Infotainment system,
- Vehicle-to-vehicle systems,
- Airbag control unit,
- Telematic control system,
- End-point devices,

- Infotainment system,
- Vehicle-to-vehicle systems,
- Airbag control unit,
- Telematic control system,
- End-point devices,
- and many more.

Automotive digital forensics

In automotive digital forensics investigations, different involved components must be **understood** to generate an **overall picuture of the digital events** that have taken place.

Automotive digital forensics

In automotive digital forensics investigations, different involved components must be **understood** to generate an **overall picuture of the digital events** that have taken place.

This includes an understanding of the autopilot.

• Who performed or is responsible for a digital event?

- Who performed or is responsible for a digital event?
- What digital event was performed?

- Who performed or is responsible for a digital event?
- What digital event was performed?
- When did the digital event take place?

- Who performed or is responsible for a digital event?
- What digital event was performed?
- When did the digital event take place?
- Where did the digital event take place?

- Who performed or is responsible for a digital event?
- What digital event was performed?
- When did the digital event take place?
- Where did the digital event take place?
- How did the digital event take place?

- Who performed or is responsible for a digital event?
- What digital event was performed?
- When did the digital event take place?
- Where did the digital event take place?
- How did the digital event take place?
- Why did the digital event take place?

What is metadata?

Metadata is **data that describes data**. It is **directly linked** to the describing object [Car2005].

Examples are timestamps, object size, file types, directory structures, and many more.

Why is metadata important?

Metadata changes when the object is modified, deleted, or other wise changed [Car2005].

Metadata can answer forensic questions [Buc2004].

Research question and hypothesis

Research question

What are DF- and ADF-specific characteristics that can be captured in the file system of a modern vehicle?

Research question and hypothesis

Research question

What are DF- and ADF-specific characteristics that can be captured in the file system of a modern vehicle?

Hypothesis

The file system of the Tesla autopilot contains metadata relevant to answer forensic questions in ADF investigations.

Our approach

Extensions

Ext.	Cnt.	Ext.	Cnt.	Ext.	Cnt.
.so	356	.sh	28	.5	11
.0	221	.txt	26	.10	9
.crt	140	.map	26	.wav	9
.pem	133	.hlp	25	.pdf	8
.conf	103	.bin	24	.3	7
.mo	100	.4	19	.profile	7
.sl	46	.rules	18	.00	7
.1	41	.56	15	.13	6
.2	33	.hwdb	14	.16	6
.img	32	.6	14		

Table 1: Number of file extensions within a Tesla autopilot

Timestamps

Figure 3: Timestamps of the files within the Tesla autopilot

Additional metadata

User accounts:

- root
- daemon
- temperature_monitor
- visualizer
- legacyvehicle
- drivermonitor
- gps
- etc.

Additional metadata

Other:

- 1 .csv file
- 8 .pdf files
- 26 .txt files (READMEs)
- 32 .img files (firmware images)
- Buildroot configuration file with an unique identifier
- etc.

Can we trust the collected data?

Forensic soundness

Degree of correctness, atomicity, and integrity in memory acquisitions [Voe2012][Ott2022]

Can we trust the collected data?

Forensic soundness

Degree of correctness, atomicity, and integrity in memory acquisitions [Voe2012][Ott2022]

Due to the usage of a chip-off, we are forensically-sound with our acquisition.

How helpful is the metadata?

Forensic questions	Corresponding identified metadata		
Who	User accounts and cron-jobs		
Where	Files and folders structure		
When	Timestamps of the files and log-files		
What	Log files within the etc folder		
How	Configuration files		
Why	Can not be answered		

Table 2: Results of the analysis in relation to the forensic questions

Research question

What are DF- and ADF-specific characteristics that can be captured in the file system of a modern vehicle?

Research question

What are DF- and ADF-specific characteristics that can be captured in the file system of a modern vehicle?

 \rightarrow We identified general and automotive-specific characteristics.

Research question

What are DF- and ADF-specific characteristics that can be captured in the file system of a modern vehicle?

 \rightarrow We identified general and automotive-specific characteristics.

Hypothesis

The file system of the Tesla autopilot contains metadata relevant to answer forensic questions in ADF investigations.

Research question

What are DF- and ADF-specific characteristics that can be captured in the file system of a modern vehicle?

 \rightarrow We identified general and automotive-specific characteristics.

Hypothesis

The file system of the Tesla autopilot contains metadata relevant to answer forensic questions in ADF investigations.

 \rightarrow We can answer all forensic questions except "why".

References

[Gom2021] K. Gomez Buquerin, C. Corbett, and H.-J. Hof, "A generalized approach to automotive forensics," Forensic Science International: Digital Investigation, Vol. 36, p. 301111, 2021

[Car2005] B. D. Carrier, "File System Forensic Analysis," Addison-Wesley, 2005

[Buc2004] F. Buchholz and E. Spafford, "On the role of file system metadata in digital forensics," Digital Investigation, Vol. 1, No. 4, Elsevier BV, pp. 298-309, 2004

[Voe2012] S. Vömel and F. Freiling, "Correctness, atomicity, and integrity: Defining criteria for forensically-sound memory acquisitions," Digital Investigation, Vol. 9, No. 2, Elsevier BV, pp. 125-137, 2012

[Ott2022] J. Ottmann, F. Breitinger, and F. Freiling, "Defining Atomicity (and Integrity) for Snapshots of Storage in Forensic Computing," Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), 2022