

Epipolar Shift Compensated Light Field Video Quality Metric

Nusrat Mehajabin, Dan Jin, Rui Yao, Thomas Dykstra, Mahsa Pourazad, and Panos Nasiopoulos

Presented by: Nusrat Mehajabin

PhD Candidate,

Electrical and Computer Engineering

University of British Columbia

Vancouver, Canada

🖂 nusratm@ece.ubc.ca

SEducation

- Ph.D. 2018-present; UBC
- M.S. 2013-2015; DU
- B.Sc. 2009-2013; DU

Research

- Light Field (LF) Compression
- LF Refocusing
- LF Quality Metrics
- LF view synthesis

- Deep Learning
- UI design and front-end development
- Software development

Work

- Research Assistant; DML
- Teaching Assistant; UBC
- Lecturer; DU; BRAC U

Interests

- Internet
- Movies
- Travelling
- Cooking

Every light ray, from every point in space towards every direction

Light Field (LF) Capture

Captured Content (Camera array)

Å

LF Perspective Change

Å.

Å

Process the LF

Refocused on the "books"

Synthesize Novel Views in between

Compression

Conventional Video

Light Field Video

Our Objective: Determine Quality of Processed LF Compared to Original

Diagonally they do not represent the
same line of pixels, therefore, the EPIs do
not form those lines

View(1, 1) (Red) vs. View(2, 2) (Green)

We find the corresponding rows by using SIFT

View(2, 2) (Red) vs. View(3, 3) (Green)

Sample Diagonal EPI

Spatial Consistency

Original

	QP45	QP40	QP35	QP30	QP25
Horizontal EPI PSNR	30.6437	33.1357	35.6426	37.8914	39.9501
Vertical EPI PSNR	30.9127	33.4326	35.9023	38.0744	40.0443
Diagonal EPI PSNR	29.2132	31.3736	32.9539	33.7960	35.3868
Average PSNR	30.2565	32.6473	34.8329	36.5873	38.4604

	QP45	QP40	QP35	QP30	QP25
Horizontal EPI SSIM	0.8945	0.9351	0.9605	0.9746	0.9831
Vertical EPI SSIM	0.8804	0.9250	0.9531	0.9688	0.9782
Diagonal EPI SSIM	0.8528	0.9002	0.9282	0.9407	0.9556
Average SSIM	0.8759	0.9201	0.9473	0.9614	0.9723

Distorted (Compressed)

Angular Consistency

Original

Distorted (Compressed)

Horizontal, vertical and diagonal EPI gradient histogram

 α is chosen depending on the distortion operation ²⁶

- We developed a new LF quality metric
- First method to considers spatial and full angular consistency of LF
- Future goals
 - Test the metric for other operations such as synthesis and refocusing
 - Subjective tests to validate the objective metric

References ultimedia

[1] M. Levoy and P. Hanrahan, "Light Field Rendering," In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996, Aug 1, pp. 31-42.

[2] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, "Light Field Photography with a Hand-held Plenoptic Camera," 2005 (Doctoral dissertation, Stanford University).

[3] C. Zhang, G. Hou, Z. Zhang, Z. Sun, and T. Tan, "Efficient auto-refocusing for light field camera," Pattern Recognit., vol. 81, pp. 176–189, Sep. 2018, doi: 10.1016/j.patcog.2018.03.020.

[4] C. Conti, L. D. Soares, and P. Nunes, "Light field coding with field-of-view scalability and exemplar-based interlayer prediction," IEEE Trans. Multimed., vol. 20, no. 11, pp. 2905–2920, 2018, doi: 10.1109/TMM.2018.2825882.

[5] N. Mehajabin, M. T. Pourazad, and P. Nasiopoulos, "An Efficient Pseudo-Sequence-Based Light Field Video Coding Utilizing View Similarities for Prediction Structure," IEEE Trans. Circuits Syst. Video Technol., 2021, pp. 1-16, doi: 10.1109/TCSVT.2021.3092282.

[6] N. Sabater et al., "Dataset and Pipeline for Multi-view Light-Field Video," IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2017-July, pp. 1743–1753, 2017, doi: 10.1109/CVPRW.2017.221.

[7] S. L. P. Yasakethu, C. T. E. R. Hewage, W. A. C. Fernando, and A. M. Kondoz, "Quality analysis for 3D video using 2D video quality models," IEEE Trans. Consum. Electron., vol. 54, no. 4, pp. 1969–1976, 2008, doi: 10.1109/TCE.2008.4711260.

[8] P. Joveluro, H. Malekmohamadi, W. A. C. Fernando, and A. M. Kondoz, "Perceptual video guality metric for 3D video guality assessment," 3DTV-CON 2010 True Vis. - Capture, Transm. Disp. 3D Video, pp. 1–4, 2010. doi: 10.1109/3DTV.2010.5506331.

[9] V. K. Adhikarla, M. Vinkler, D. Sumin, R. K. Mantiuk, K. Myszkowski, and P. Didyk, "Towards a guality metric for dense light fields," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2, 2017, pp. 58-67.

[10] Y. Fang, K. Wei, J. Hou, W. Wen, and N. Imamoglu, "Light Filed Image Quality Assessment by Local and Global Features of Epipolar Plane Image," 2018 IEEE 4th Int. Conf. Multimed. Big Data, BigMM 2018, pp. 1-6, doi: 10.1109/BigMM.2018.8499086.

[11] P. Paudyal, F. Battisti, S. Member, M. Carli, and S. Member, "Reduced Reference Quality Assessment of Light Field Images," IEEE Trans. Broadcast., vol. 65, no. 1, pp. 152–165, 2019.

[12] L. Shi, W. Zhou, Z. Chen, and J. Zhang, "No-Reference Light Field Image Quality Assessment Based on Spatial-Angular Measurement," IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 11, pp. 4114–4128, 2020, doi: 10.1109/TCSVT.2019.2955011.

[13] D. G. Lowe, "Object recognition from local scale-invariant features," Proc. IEEE Int. Conf. Comput. Vis., vol. 2, pp. 1150–1157, 1999, doi: 10.1109/iccv.1999.790410.

[14] G. Tech, Y. Chen, K. Müller, J. R. Ohm, A. Vetro, and Y. K. Wang, "Overview of the multiview and 3D extensions of high efficiency video coding," IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 1, pp. 35–49, 2016, doi: 10.1109/TCSVT.2015.2477935.

Digital

Thank You

29

Questions

