

INTERNET2022

Evaluation of MPTCP with BBR Performance on Wi-Fi/Cellular networks for Video Streaming

Masayoshi Kondo, Dirceu Cavendish Daiki Nobayashi, Takeshi Ikenaga

Kyushu Institute of Technology, Japan kondo.masayoshi146@mail.kyutech.jp {dirceu@ndrc, nova@ecs, ike@ecs}.kyutech.ac.jp

Resume

Masayoshi Kondo

- Second-year master's student
- Kyushu Institute of Technology, Japan
- kondo.masayoshi146@mail.kytuech.jp
- Field of StudyMPTCP
 - Transport Protocols

Introduction #1

The demand of video streaming has exploded

Mobile video traffic represents a large portion of overall internet traffic.

GLOBAL APPLICATION CATEGORY TRAFFIC SHARE

	Rank Change	Category	Downstream	Upstream
1	-	Video Streaming	48.9%	19.4%
2	-	Social Networking	19.3%	16.6%
	2	Web	13.1%	23.1%
4	-1	Messaging	6.7%	20.4%
5	-	Gaming	4.3%	1.9%
6	-2	Marketplace	4.1%	1.2%
7	2	File Sharing	1.3%	6.6%
8	-1	Cloud	1.1%	6.7%
9	-3	VPN and Security	0.9%	3.9%
10	-	Audio	0.2%	0.2%

Distribution of global monthly mobile data volume

*https://www.statista.com/statistics/383715/global-mobile-data-traffic-share/

*https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2021/Phenomena/MIPR%20Q1%202021 %2020210510.pdf

Introduction #2

Video streaming over mobile network

- High speed and broadband wireless access: 4G/5G/Wi-Fi
- Mobile devices
 - are becoming more sophisticated and have multiple wireless interfaces.
 - switching between multiple interfaces dynamically

These wireless interfaces can be used simultaneously to enable efficient and redundant communications.

Introduction #3

Multipath TCP (MPTCP)

- use multiple paths simultaneously.
- can improve throughput for applications
- can guarantee redundancy

≮

MPTCP performance is determined by:

- MPTCP scheduler
- MPTCP congestion control

Video streaming over Multipath TCP

MPTCP scheduler

- determines a path to forward packets
- MPTCP congestion control
 - adjusts congestion window (cwnd) size as well as conventional TCP congestion controls

Video streaming over Multipath TCP

MPTCP scheduler

- determines a path to forward packets
- MPTCP congestion control
 - adjusts congestion window (cwnd) size as well as conventional TCP congestion controls

Head of Line Blocking

- Head of Line Blocking(HOL blocking)
 - HOL blocking occurs when data already delivered at the receiver is waiting for additional packets that are blocked at another sub-flow, potentially causing incomplete or late frames to be discarded at the receiver.

Head of Line Blocking

At the receiver, video frames cannot be recovered due to HOL blocking, resulting in poor video quality.

BBR congestion control

- Bottleneck Bandwidth and Round-trip propagation time (BBR)
 - Available on Linux kernel 4.9 or later since Google announced in September 2016.
 - New congestion control without Loss-based algorithm.
 - BBR constantly monitors throughput and RTT, adjusting data transmission rate while understanding the relationship between the amount of transmission data and RTT.

Objective

≮

Important factors in video streaming over MPTCP

- Determination of a path to forward packets for MPTCP scheduler.
- Congestion control of each sub-flow.
- We experimented with various combinations of conventional and proposed schedulers and MPTCP congestion control.

We evaluated MPTCP video streaming with BBR

MPTCP schedulers

Default Scheduler (Linux implementation)

- Low RTT First (LRF) selects the path with smaller RTT
- Proposed schedulers
 - Throughput-based
 - Largest Packet Credits (LPC)
 - Largest Estimated Throughput (LET)
 - Reducing sub-flow switching-based
 - Greedy Sticky (GR-STY)
 - Throughput Sticky (TP-STY)
 - Throughput RTT Sticky (TR-STY)

LRF scheduler

Low RTT First (LRF) scheduler

- MPTCP default scheduler (Linux implementation)
- selects the path with smallest RTT among paths with congestion window space for new packets

LRF scheduler

Low RTT First (LRF) scheduler

- MPTCP default scheduler (Linux implementation)
- selects the path with smallest RTT among paths with congestion window space for new packets

LPC scheduler

Largest Packet Credits (LPC) scheduler

Among the sub-flows with space in their congestion window cwnd, this scheduler selects the one with largest available space

LPC scheduler

Largest Packet Credits (LPC) scheduler

Available space consists of the number of packets allowed by current cwnd size subtracked from the number of packets that have not been acknowledged yet

LET scheduler

Largest Estimated Throughput (LET) scheduler

Among the sub-flows with large enough cwnd to accommodate new packets, this scheduler selects the one with largest throughput.

LET scheduler

Largest Estimated Throughput (LET) scheduler

the estimated throughput in each sub-flow as cwnd/sRTT

GR-STY scheduler

Greedy Sticky (GR-STY) scheduler

- selects the path with smallest RTT as same as LRF
- But, once a path is selected, GR-STY stays on a path for as long as there is available window space

GR-STY scheduler

Greedy Sticky (GR-STY) scheduler

- selects the path with smallest RTT as same as LRF
- But, once a path is selected, GR-STY stays on a path for as long as there is available window space

TP-STY scheduler

Throughput Sticky (TP-STY) scheduler

- selects the path with smallest RTT as same as LRF
- A new path is selected only if the throughput of the new path is larger than the throughput of the currently selected path

TR-STY scheduler

Throughput RTT Sticky (TR-STY) scheduler

- selects the path with smallest RTT, similar to LRF
- But, in addition to TP-STY, TR-STY switches paths only if the new path has smaller RTT than the current one

MPTCP Congestion Control

Uncoupled congestion controls

determine congestion window size independently for each subflow

BBR

 Use two metrics, RTprop (round-trip propagation time) and BtlBw (bottleneck bandwidth), to adjust congestion window size.

Cubic

- Loss-based algorithm, Linux standard.
- Use the cubic function to adjust cwnd.
- Compound
 - Loss-based and delay-based algorithm.
 - Determine the window size by the sum of dwnd and cwnd.
- Coupled congestion controls
 - determine the congestion window size by considering the entire connection.
 - Linked Increase Algorithm(LIA)
 - Opportunistic Linked Increase Algorithm(OLIA)
 - Balanced Linked Adaptation Algorithm(BALIA)

Coupled Congestion Control

Linked Increase Algorithm(LIA)

- Loss-based algorithm with traffic load balancing of multiple paths
- New Reno is used in each sub-flow, and the congestion window size increase / decrease method (AIMD: Additive increase multiplicative decrease) is adopted.
- Load balancing is performed by increasing cwnd for paths with low RTT and decreasing cwnd for paths with large RTT.
- Opportunistic Linked Increase Algorithm(OLIA)
 - Loss-based algorithm with TCP friendliness
 - Estimate the number of bytes sent between the last two packet losses and adjust the congestion window size.
- Balanced Linked Adaptation Algorithm(BALIA)
 - Loss-based algorithm with TCP friendliness and responsiveness

Performance Evaluation

 We analyze video performance vis-à-vis TCP variants and path schedulers

 We utilize experiments to evaluate the video performance for various combinations of TCP and schedulers

Experimental Environment

- HTTP apache video server is connected to two routers
- VLC video client is connected to LTE base station and router1
- We set emulator between server and router1
- Since the bandwidth of IEEE 802.11a is sufficiently large for the bit rate of video, we have adopted 802.11a as the wireless LAN interface.

Video/network Settings

Table 1: Video Settings

Video size	113 MBytes
Video Rate	5.24 Mb/s
Playout time	3 mins
Encoding	MPEG-4
Video Codec	H264 AVC
Audio Codec	MPEG-4 AAC

Table 2: MPTCP Settings

MPTCP Schedulers	LRF(default) LPC, LET GR-STY, TP-STY, TR-STY
MPTCP Variants	 Uncoupled BBR Cubic Compound Coupled LIA OLIA BALIA

≮

We use network emulator

We set delay and dynamically packet loss for Wi-Fi path only

Scenario A

Scenario B

- The reason for dynamically varying packet loss on Wi-Fi path.
 - Video streaming in mobile networks changes the packet loss rate of the Wi-Fi path as the Mobile device moves.
 - Scenario A

assumes that user device is within Wi-Fi range and has relatively good communication.

Scenario B

assumes that user device is at the end of Wi-Fi range and has a poor communication.

Scenario A

- Packets loss ratio starts from 0%.
- We set to increase by 1% every 5 seconds for 180 seconds, with a maximum of 6%
- Packet loss rate rises to 6% twice during video playback.

Time	Packet Loss
①0s – 30s	0%
②31s – 55s	1% - 5%
③56s – 85s	6%
④86s – 110s	5% - 1%
⑤111s – 140s	0%
⑥141s – 165s	1% - 5%
⑦165s – 180s	6%

Scenario B

- Packets loss ratio starts from 6%.
- We set to decrease by 1% every 5 seconds for 180 seconds, with a minimum of 0%
- Packet loss rate rises to 6% three times during video playback.

♦S	Time	Packet Loss
	①0s – 30s	6%
	②31s – 60s	5% - 0%
	③61s – 90s	0% - 5%
	④91s – 120s	6%
	(5)121s – 150s	5% - 0%
	⑥151s – 180s	0% - 5%

We set up four scenarios in Scenario A and B with modified RTT for the Wi-Fi path only.

scenarios	path	delay	Packet loss pattern	RTT
A1	LTE Wi-Fi	0ms 20ms	Scenario A	RTT 80ms RTT 40ms
A2	LTE Wi-Fi	0ms 30ms	Scenario A	RTT 80ms RTT 60ms
B1	LTE Wi-Fi	0ms 20ms	Scenario B	RTT 80ms RTT 40ms
B2	LTE Wi-Fi	0ms 30ms	Scenario B	RTT 80ms RTT 60ms

Scenarios A1 and A2

- Scenario A1 baseline with scenario A packet loss, where Wi-Fi path of low RTT is predominantly used.
- Scenario A2 is a slightly larger Wi-Fi path delay causes cellular path to be used.

scenarios	path	delay	Packet loss pattern	RTT	
A1	LTE Wi-Fi	0ms 20ms	Scenario A	RTT 80ms RTT 40ms	
A2	LTE Wi-P	0ms 30ms	Scenario A	RTT 80ms RTT 60ms	
B1	Scenario	Scenario A1 with small RTT			
B2	LTE Wi-Fi	0ms 30ms	Scenario B	RTT 80ms RTT 60ms	
Scenarios B1 and B2

- Scenario B1 with scenario B packet loss, where a Wi-Fi link with **low delay faces a heavier loss scenario** representing user situation at which device is at the end of Wi-Fi range.
- Scenario B2 is a Wi-Fi path delay large enough to have cellular path predominantly being used.

scenarios	path	delay	Packet loss pattern	RTT
A1	LTE Wi-Fi	0ms 20ms	Scenario B loss pattern is heavier loss scenario because of starting packet loss 6%.	
A2	LTE Wi-Fi	0ms 30ms		
B1	LTE Wi-Fi	0ms 20ms	Scenario B	RTT 80ms RTT 40ms
B2	LTE Wi-Fi	0ms 30ms	Scenario B	RTT 80ms RTT 60ms

Performance evaluation index

Video Performance

Picture discard

Number of frames discarded by the video decoder

Buffer underflow

Number of buffer underflow events ad video client buffer

Transmission Performance

Total Packets

Total number of packets sent during video playback

Retransmit Packets

Total number of packets retransmitted during video playback

The experiment is conducted **five times** and the average is calculated.

Scenario A1 : video performance

- packet loss pattern = Scenario A
- Wi-Fi: RTT= 40ms、LTE: RTT= 80ms
- Figures report on video streaming buffer underflow and picture discard performance
- Except for LIA, the video quality is excellent.

Scenario A1 : Total Packets

Path properties

- packet loss pattern = Scenario A
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- Figures report of LTE and Wi-Fi Total Packets
- We can see that LTE path is most used

Total packets LTE (number of packets)

Total packets Wi-Fi (number of packets)

Scenario A1 :Retransmit Packets

Path properties

- packet loss pattern = Scenario A
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- Figures report of LTE and Wi-Fi Retransmit Packets

We can see that BBR has a high number of retransmissions

Scenario A2 : video performance

- packet loss pattern = Scenario A
- Wi-Fi: RTT= 60ms,LTE: RTT= 80ms
- Compound, OLIA and BALIA have a large buffer underflow and picture discard performance using TP-STY scheduler. LIA variants perform poorly.

Scenario A2 : Total Packets

Path properties

- packet loss pattern = Scenario A
- Wi-Fi: RTT= 60ms,LTE: RTT= 80ms
- We can see that TCP variants of poor video performance under TP-STY prefers Wi-Fi path to LTE path, even under large Wi-Fi path delay and packet loss

Total packets LTE (number of packets)

Total packets Wi-Fi (number of packets)

Scenario A2 :Retransmit Packets

- packet loss pattern = Scenario A
- Wi-Fi: RTT= 60ms,LTE: RTT= 80ms
- We can see larger retransmissions for BBR than other variants across schedulers except TP- STY on Wi-Fi path.

Scenario B1 : video performance

- packet loss pattern = Scenario B
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- We notice a wide variety of performances vis a vis path scheduler/TCP variant combinations. Impressive is the consistent good performance of BBR TCP variant, even across all schedulers.

Scenario B1 : Total Packets

- packet loss pattern = Scenario B
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- We can see that BBR maintains a better Wi-Fi utilization, striking a balance between LTE and cellular paths across all packet schedulers.

Scenario B1 :Retransmit Packets

- packet loss pattern = Scenario B
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- BBR with a significantly larger number of retransmissions across all schedulers than other TCP variants.

Scenario B2 : video performance

- packet loss pattern = Scenario B
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- Only TCP variants able to deliver good performance across all schedulers is BBR and Cubic.
- LIA variants all deliver large buffer underflow due to their lack of aggressiveness.

Scenario B2 : Total Packets

Path properties

- packet loss pattern = Scenario B
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- Large LTE path utilization, due to Wi-Fi large delay and heavy packet losses across all TCP variants.

Total packets LTE (number of packets) Total packets Wi-Fi (number of packets)

Scenario B2 : Retransmit Packets

- packet loss pattern = Scenario B
- Wi-Fi: RTT= 40ms,LTE: RTT= 80ms
- As in scenario B2, BBR retransmits more than the other congestion control variants.

Results : evaluation

- Picture discard for BBR in all scenario
 - All schedulers with BBR result in good performance

Results : evaluation

Retransmit Packets for BBR in all scenario

BBR retransmits more than other congestion control variants.

Results : evaluation

- Overall, video quality was good for all schedulers and BBR combinations.
- In all scenarios, BBR retransmits more than the other congestion controls.

Conclusion

- In MPTCP video streaming, Head of Line Blocking occurs due to the difference in communication characteristics of each path, and the video quality is degraded
- Congestion control of each sub-flow and path scheduler are important factors for improving video quality.
- As a result, Video quality was found to be better than other congestion controls for MPTCP video streaming using BBR.
- We are currently investigating the reasons for BBR consistently good streaming performance, despite its large number of retransmissions.