

Applying Deep Learning Techniques in Automated Analysis of Echocardiograms, CMRs and Phonocardiograms for the Detection and Localization of Cardiac Diseases

Authors:

Arvind Bansal and Racheal Mukisa Kent State University, Kent, OH, USA Emails: akbansal@kent.edu and rmukisa1@kent.edu Presented by Racheal Mukisa

Arvind Bansal and Racheal Mukisa

Short Bio of Racheal Mukisa (Presenter)

- PhD student of Computer Science at Kent State University
- PhD Advisor: Professor Arvind Bansal
- PhD Research area: Applying Deep Learning Techniques to Analyze Cardiac Defects
- Recipient of AAUW (American Association of University Women) Fellowship and Kent State Graduate Assistantship

Research Interest of the Group

Social Robotics

- Facial expression analysis
- Gesture analysis
- Gesture generation in humanoids
- Multimodal analysis of human emotions and pain

Intelligent analysis of Biosignals

- ECG analysis
- Cardiac echogram and MRI analysis using deep learning analysis
- Intelligent analysis of micro-RNA targets to understand human disease such as cancer

Motivation

- Overall review of the current trends in applying deep learning techniques to understand and localize cardiac defects
 - Analysis of echoCG (echocardiograms) images using CNN, LSTM and their combination
 - Analysis of Cardiac Magnetic Resonance (CMR) images and video frames using CNN, LSTM and their combination
 - Analysis of phonocardiograms (PCG) using CNN and LSTM to detect valvular diseases and fetal cardiac defects
- Automated analysis combining deep learning techniques is a powerful approach due to
 - Non-invasive nature
 - Blood flow related analysis using Doppler echoCG
 - Improved resolution of images with reduced cost, especially for echoCG

Contribution

- A good comprehensive reference article describing various cardiac diseases involving cardiac muscle defects and valvular defects
- Describes the issues in cardiac chamber and valve detection using image segmentation
- Describes the application of deep learning in identifying
 - Cardiac wall detection
 - Blood-flow volume detection
 - Cardiac wall thickness in ventricle under continuous cardiac motion
 - Wave pattern analysis of PCG

5 5/19/2022

Background – Anatomy of Heart

- Four chambers:
 - Right atrium (RA); right ventricle (RV);
 - Left atrium (LA); left ventricle (LV)
 - Left chambers are separated from right chambers by septum
 - LV is the biggest chamber

Blood-flow: Body \rightarrow RA \rightarrow RV \rightarrow Lung \rightarrow LA \rightarrow LV \rightarrow Body

- Compression/relaxation occurs due to bioelectric signal flowing in cardiac cells
- Periodic compression of upper and then lower chambers
- Compression in upper chambers moves blood from upper \rightarrow lower chambers
- Compression in lower chambers pushes blood to lung or body
- Valves to control blood flow
 - Tricuspid valve (3 leaflets): $RA \rightarrow RV$; pulmonary valve (two leaflets): $RV \rightarrow$ lungs
 - Mitral valve: $LA \rightarrow LV$; Aortal valve: $LV \rightarrow body$

6

Noninvasive Techniques

Echocardiogram (echoCG)

- Ultrasound technique using reflection and refraction using millimeter waves
- Resolution has improved significantly
- Two types of echograms: TTE (transthoracic echoCG) and transesophageal echoCG (TEE). TTE is completely non-invasive

Cardiac Magnetic Resonance (CMR)

- Uses MRI-based imaging of heart
- Based upon relaxation of magnetically excited hydrogen ions
- Uses multiple 2D slices to simulate 3D images
- Best possible resolution among imaging techniques

Phonocardiograms (PCG)

- Sound recordings of continuous opening and closing of valves
- Not suitable for localization of muscle-based and valvular diseases

Valvular and Heart Muscle Diseases

- Cardiac hypertrophic myopathy
 - Increased muscle thickness and reduced ventricular volume
 - Blood volume flow problem and hypertension
- Valvular diseases causing stenosis and regurgitation
 - Calcification of the leaflets and defects in valves
 - Ebstein's anomaly: restricting blood-flow to lungs
- Diseases caused by chamber or blood-channel fusion during birth
 - Blood contamination between de-oxygenated and oxygenated blood
- Perforation or hole in the septum during birth
 - Blood contamination between deoxygenated and oxygenated blood
- Narrowing of blood channels due to deposits causing ischemia, myocardial infarction, or blood-flow problem

5/19/2022

8

*The image is taken from Wikimedia commons and is in public domain

Issues and Advances in Diagnosis

- Invasive investigations for diseases based upon cardiac muscle, chamber or valves are expensive and have side-effects
- ECG can only analyze the presence of arrhythmia, indicate ischemia, myocardial infarction, or electrolyte deficiencies.
 - Cannot localize the diseases caused by defects in cardiac muscle, chamber or valves
- Defects in cardiac muscle, chamber or valves require 3D image analysis, motion analysis and blood flow analysis
- Echocardiogram and CMR provide information about images and motion needed for localization
- PCG provides information about regurgitation and stenosis

Deep Learning in Diagnosing Cardiac Diseases

Disease Class	Input Mode	DNN Technique
Valvular stenosis + regurgitation	echoCG and PCG	CNN-based segmentation and TGNN + CNN + LSTM
Fetal heart defects	echoCG + CMR	CNN-based segmentation for wall boundaries
Myocardium hypertrophy and myopathy	Doppler echoCG + CMR	Hybrid CNN + LSTM + encoders and decoders for wall thickness, chamber boundaries and blood flow volume
Ischemia and myocardial infarction	CMR	CNN based tissue classification

Echocardiogram Analysis using Deep Learning

Used to diagnose

 Stenosis and regurgitation; atrial blockages including atherosclerosis; atrial fibrillation; congenital heart disease; coronary arterial disease; cardio myopathy and hypertrophy; murmur

Used CNN + LSTM and their variants for segmentation

- Segmentation is measured using non-isotropic diffusion
- Aorta and mitral regurgitation uses region-based CNN, jet-area ratios, jet-stream acceleration at orifice, and PISA
- Area of the orifice is estimated using blood-flow convergence and Doppler's effect

CHD estimated using multiview echoCG and depth-wise separable convolution

- Filters and combines two separate layers reducing computational complexity
- Multiview provides clarity and evidence from other views

Issues and Approaches in EchoCG Analysis

Major problems in chambers identification

- Artifacts
- Discrimination between chambers and septum using similar light intensity
- Fixing missing boundaries between chambers when valves are open
- Multiple variants of CNN-based models
- DW-net derives boundaries precisely using two layers
 - Dilated convolution change (DCC) layer collects local and global features
 - W-net derives precise boundaries using repeated encoders + decoders
- Echonet derives precise structure and anatomy of heart, blood-flow volume, chamber enlargement, hypertrophy, etc.
 - Uses multiple attributes: age, sex, gender, blood flow volume, LV hypertrophy, pacemaker, LA enlargement, etc.

Deep Learning based CMR Analysis

- Cardiac region is identified using dynamically changing voxel intensities
 - LV is recognized first being the largest chamber
 - Other chambers are recognized later using a heart model

Dynamic chamber shape estimation

- CMR analysis estimates end-diastolic-volume (EDV), end-systolic volume (ESV), ejection fraction (EF), and myocardial mass
 - Quantification is used to estimate blood-flow and blood-ejection from LV

Segmentation approaches used for muscle defects and valvular defects

- Approaches are image driven or model driven
- Image driven approaches use intensity-based histogram analysis, clustering, region growing, and active contours to identify blood pools
- Model driven approaches use statistical analysis with atlas or shape contours
- LV segmentation is used for motion estimation, wall thickness, ischemia and infarction

Phonocardiogram Analysis

- Analysis is based upon diastolic and systolic phases
- Estimates stenosis, regurgitation, atherosclerotic disease and murmur
- Analysis is done either in time-domain or frequency domain
- Time domain analysis uses wavelet transforms + deep learning
- Frequency domain uses Fourier transforms + deep learning
- Time-growing Neural Network (TGNN) for deep learning
 - Divides the waveform in multiple time segments and diastolic and systolic patterns
 - Combines windowing with neural net-based classification
 - Windowing uses a fixed starting point by growing end-point
 - CNN + LSTM based hybrid model is used for the classification of diseases

Major Datasets

EchoNet Dynamic Database

- Includes 10330 four chamber videos with human expert annotations
- Includes measurements, tracings, ejection volume and cardiac motions
- Creatis Database contains multimodal 2D and 3D echoCG and CMR images, application software and diagnostics
 - It contains smaller databases including simulated sequences, manual contouring of LV and RV
- Harvard Database: CMR 4D blood flow datasets of echoCG and CMR data of 108 patients
- Tuft Medical echoCG dataset contains information about disease severity
- Heart Database contains 3D CMR segmented LV images validated by clinicians
- EMIDEC Database contains CMR LV images of 150 patients with heart attacks
- Physionet Database contains nine PCG datasets
- Cardiac Atlas Database contains pathological datasets of regional heart shapes

15 5/19/2022

Discussion and Conclusion

- Review has provided recent trend in applying deep learning for noninvasive image-based analysis of heart muscles defects and valvular defects.
- The analysis combines information from echoCG images, Doppler effect-based blood-flow analysis, CMR multimedia images for heart chambers and PCG-based sound analysis.
- The integrated deep-learning + image-based analysis can detect
 - Heart chambers detection, motion analysis, heart wall thickness, blood-flow estimates
- Many diseases previously not detected or localized noninvasively can be detected and localized accurately and noninvasively.
- In the coming decade, deep learning-based analysis will become part of effective localization of heart defects.

