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Research problem:

o Handling multiple heterogeneous data sources of a smart factory

o Massive amounts of structured, semi-structured and unstructured data → need to

manage them through Data Lake (DL)

o A metadata semantic enrichment mechanism that enables fast storing and efficient

retrieval from a smart factory DL

o Providing the ability to serve best process mining activities
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Main research contributions :

o Smart Manufacturing Data Lake Metadata Framework for Process Mining

o An extended semantic enrichment standardization framework for storing data/data

sources in a smart factory using data blueprints

o Developing an extension to the DL architecture where we introduced the notion of

data puddles

o To be used for storing smaller portions of data according to some formatting

criterion

o Enhances big data storing and retrieval issues by providing process mining readiness
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• Refers to the large amounts of digital data generated by tools and machines, and the

global population

• Huge amounts of information produced and consumed, data is considered as the

“power” of businesses

• Only if is properly processed to offer mainly decision support

• Most companies have a lot of unused data that can be used for process mining

• This is a side-effect of the widespread digitization and automation of business

processes, which leaves digital traces of real process executions as a byproduct

Big Data
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• Based on a number of new and innovative technological developments, such as [1]:

❖ Cyber Physical Systems (CPSs)

❖ Internet of Things (IoT)

❖ Cloud Computing, Cognitive Computing

❖ Robotics

❖ Augmented Reality (AR) technology and intelligent tools

• Contribute to the production of personalized products according to customer needs by

digitization of the entire product production cycle [2]

• Factories of the future will consist a set of CPSs that will interact with each other

Industry 4.0
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• A CPS consists of mechanisms controlled or monitored by computer algorithms,

integrated into the Internet and its users

• Change the way people interact with machines

• Workers will need to be skilled and will need to be aware of the functions

• Of coordinated intelligent machines from a central control point and of the data they

produce [3]

• A smart factory is an environment that consists of Big Data sources

Industry 4.0 /CPSs
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• Big Data processing includes the management of multiple and various types of

data: structured, semi-structured, and unstructured

• A storage repository that could store a vast amount of raw data of these various

types in its native format and selected and organised when needed

• It is a place to store every type of data in its native format with no fixed limits on

account size or file

• Offers high data quantity to increase analytic performance and native integration

Data Lakes (DL)
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• A quite new data storage architecture linked with Big Data processing with unsolved

challenging problems [4]

• Used to store large amounts of relational and non-relational data

• Two of the major and challenging problems of DL:

(i) no descriptive metadata or mechanism to maintain metadata leading to data

swamp [5]

(ii) security (privacy and regulatory requirements) and access control as data in a

folders

Data Lakes (DL) (… continued)
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• An emerging research discipline that helps organizations discover and analyze

business processes based on raw event data

• Sits between computational intelligence and data mining on one hand, and process

modeling and analysis on the other [12]

• Many researchers are developing new and more powerful process mining

techniques and software vendors are incorporating these in their software and

especially now to the world of Big Data [13]

• Generally, process mining techniques based on the business log files produced

Process Mining
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• Companies and organizations tend to produce their 
log files according to their own data standards

• A standardization model is needed

• To unify and formalize the description of all business 
entities in the enterprise under analysis, allowing to 
efficiently monitor and extract knowledge from event 
logs

• In our case, this standardization is provided through 
the theory of Blueprint Models

• In our paper we are trying to utilize also Big Data as a 
goal to transform them by this standardization

• A big challenge in a world in which data is produced 
by a vast number of heterogeneous data sources

Process Mining (… continued)

The three types of process mining activities
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• Sawadogo et al. 2019 [11], identified and presented six main functional characteristics

that should ideally be provided by a DL metadata system:

o Semantic Enrichment (SE)

o Data Indexing (DI)

o Link generation and conservation (LG)

o Data Polymorphism (DP)

o Data Versioning (DV)

o Usage Tracking (UT)
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• Our previous work [14] extended the aforementioned list of characteristics by

comparing the metadata mechanism with the two most completed systems:

CoreKG and MEDAL [11]. The new list of the characteristics include:

✦ Granularity ✦ Ease of storing/retrieval

✦ Size and type of metadata ✦ Expandability

• None of the existing mentions process mining readiness as a characteristic that

can add value to the synthetic examination of the quality and efficiency of

metadata enrichment mechanisms for DL
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• Provide a complete summary of a product

• Juxtapose its features with operational and performance

characteristics

• Focus → How it is manufactured, which processes are used,

and which manufacturing assets are used to make it

• Description → How manufacturers and suppliers coordinate,

arrange manufacturing processes, expedite hand-offs, and

create the final product [16]

Manufacturing Blueprints
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• This paper extends/enhances our previous work which adopts the basic principles of

manufacturing blueprints [14] to provide process mining readiness

• Modifies their purpose and meaning to reflect the description and characterization of

sources and the data they produce via the utilization of the five Big Data

characteristics

• Describe data sources by means of specific types of blueprints through an ontology-

based description representation

• Big Data sources accompanied by a blueprint metadata description before they

become part of a DL
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• An extended, unified standardization framework for smart

manufacturing and business process related data residing

• Utilizes a semantic metadata enrichment mechanism via

Blueprints and 5Vs to assist data processing in DLs with pond

• Each pond hosts / refers to a specific data type and contains

specialized storage

• Process mining is performed mainly by using timestamped data

logs

• In a DL there are various types of data that may lack time

information

• May structured data are not ready because not have timestamps
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• This paper builds upon an existing framework [14]

which is based on a metadata semantic enrichment
mechanism

• That uses the notion of blueprints [16] to produce
and organize meta-information related to each
source producing data to be hosted in a DL

• Each data source is described via two types of
blueprints which utilize the 5Vs Big Data
characteristics

• The first includes information that is stable over time

• The second involves descriptors that vary as data is
produced by the source in the course of time

• The combination of these blueprints creates the
Data Source Blueprint (DSB) Stable and Dynamic Blueprint
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METHODOLOGY (3/7)

The architectural structure of the proposed approach
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• Extend the proposed framework via creating data puddles

• Which are smaller, pre-build datasets, which store data that machines produce in the

production line (Machine and Event Blueprints)

• Extended to include a process-related blueprint

• Which provides information about the participation of each machine in various

processes during production and which machine executes each event within a process

cycle

• To test that works properly and meets the needs of a real factory investigated its

applicability to a major local industrial player, namely Paradisiotis Group (PARG)
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• Every process in the manufacturing cycle 
consists of events and each event is executed by 
a machine that participates in a specific 
blueprint

• An example of a process followed during the 
production of chicken nuggets at the PARG 
factory

• The process analyzed is practically followed for 
all pre-fried products

• Every process in the manufacturing cycle 
consists of events and each event is executed by 
a machine that participates in a specific 
blueprint. 

PARG chicken nuggets manufacturing process
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Events that take place

Machines participate

Process

Event description
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• The proposed information structure for the description of the data sources that exist

in a smart factory efficiently supports the management of multiple data formats

• Allows data to be prepared for process mining through the metadata semantic

enrichment

• That requires events to be timestamped and set in chronological order according to

the process executed

• Sources that produce unstructured and semi-structured data that are stored in the

relevant pond of the proposed approach linked with the rest of the event information

• Provide added value to the analysis of a certain process
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• Demonstrate the applicability and effectiveness of the proposed framework

• Use the chicken nuggets production process of the PARG factory as described

• The target here is twofold:

➢ Demonstrate how the proposed approach was used in practice for the PARG case-

study and highlight some interesting findings

➢ To make a short assessment of different DL structures, including the proposed

according to specific metrics and present the results that show the superiority of

this approach
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• Data produced by the Flaken and Mincing machines 
at PARG factory during the manufacturing process 
presented

• This data is stored in the structured data pond 

• Each dataset produced by the two different machines 
is stored using a different puddle within the data 
pond

• Other formats of data is generated as well, such as 
video and images

• These constitute unstructured and XML-based data 
(semi-structured)

• Data is stored in the respective pond and distinct 
puddles according the machine

Indicative data for PARG’s chicken nuggets production process
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• In order to retrieve the data for the chicken nuggets process, the following SPARQL

query should be executed:

• DL blueprint triggers first the retrieval of information on event execution from the

process blueprint

• All relevant data for this process is retrieved and mapped depending on the order in

which events are executed by machines.

• Process blueprint is connected with the event blueprint and event blueprint with the

machine blueprint

• This information was combined with the data retrieved from the appropriate puddles
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• The latter yielding some interesting results

• A few delays were encountered in some of the steps, which were revealed during this

analysis by comparing the expected with the actual execution time

• Optimization in the way the sequence of the execution of tasks (events) by the

machines had ample room for improvement in terms of timing

• Allows for utilizing both unstructured and semi-structured data for process mining, it

was considered a significant benefit

• The second experimental aim is to investigate the process mining readiness of the

manufacturing data residing comparing different structures
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❖ Granularity: ability to refine the type of information that needs to be retrieved expressed by the

number of fine-grained levels the metadata mechanism supports for defining the information sought

❖ Ease of storing/retrieval: ability of the metadata mechanism to store or retrieve data in the DL in a

simple and easy way reflected on the number of steps that need to be executed

❖ Expandability: ability to expand the metadata mechanism with further functional characteristics, or

the support for inclusion of supporting techniques or approaches, such as visual querying

❖ Process Mining Readiness: is reflected in the number of steps that need to be executed after the

query is executed for the data to be fed to process mining activities
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Definition of Low, Medium, and High of each assessment 

characteristic
Evaluation and comparison of DL structures
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• A novel smart manufacturing DL framework for process mining utilizing a semantic

enrichment mechanism via metadata blueprints

• The framework utilizes the 5Vs Big Data characteristics and blueprint ontologies to assist

data processing (storing and retrieval) in DLs

• The latter being organized with a pond architecture that hosts different types of data

enhanced by data puddles

• The puddles consist of data produced by machines in the production line and essentially

prepare the data in the ponds for process mining activities

• The applicability of the framework was demonstrated and assessed through a real-world

case-study on PARG factory
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• Process mining revealed delays and bottlenecks in the sequencing of the execution of

events by machines

• The senior management of the factory greatly appreciated the support of the proposed

approach for decision support with respect to production control

• A short comparison with different DL structures was performed revealing the high

potential of the proposed approach

• Data paddles can greatly enhance the management of manufacturing data that can later

participate in process mining activities utilizing all available data types
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• Full implementation of the proposed mechanism in cooperation with the industrial

partner using the metadata model described

• Extending its application in the context of structured, semi-structured and unstructured

data present in the processes of the factory

• Evaluation of the proposed framework in more detail and performing further process

mining steps utilizing real-world manufacturing data.

• Investigation of how to improve privacy, security, and data governance using blockchain

technology characteristics and smart contracts

Future work
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