
Validation of SoCs Security Architecture:
Challenges, Threats, and Methods

Mehran Goli

University of Bremen, Germany

DFKI Bremen, Germany

mehran@uni-Bremen.de

April 24-28, ICONS 2022

2

About Presenter

• Mehran Goli works as a senior researcher at the University of Bremen
(Universität Bremen) and the German Research Center for Artificial
Intelligence (DFKI) in Bremen, Germany.

• He holds a Ph.D. degree (Dr.-Ing.) in Computer Science from the University
of Bremen, Germany (2019).

• Dr. Goli was a recipient of the Best Paper Award at the FDL conference in
2021, a nominee for the GI Excellent Computer Science Dissertations
award, and a recipient of a Ph.D. scholarship award from the German
Academic Exchange Service (DAAD).

• He is a member of program committees of DSD, FDL, ICONS, and CYBER
conferences, a reviewer of IEEE TVLSI, ACM TECS journals, and an external
reviewer of DATE, DAC, ICCAD, ETS, DSD, and RSP conferences.

• Research interests: system-level design, verification, security validation,
and machine learning techniques for CAD.

More Info

https://mehrangoli.github.io/

3

Outline

• Introduction

– SoC design flow and security issues

– What are timing-based security attacks?

– Why should the detection process be performed at ESL?

• Security Threat Models

– Non-interference

– Implicit and explicit flows

– Timing-based data leakage threat

• Vulnerability Detection Challenges

• Information Flows Detection Methodology

– Functional and timing flows

• Conclusion

4

Introduction

• Modern SoCs

– modern design flow shifted from in-house development of IPs to the use of
existing commercial IPs

– SoCs including several 3PIPs

– 3PIP integrations can manipulate or assist in manipulating secret data

notoriously insecure

Design
Integration

In-house
design teams

SoC
Synthesize

to fabrication

SoC Design Flow

Third-party
vendors

Toolkits

Components

Library

Modern

5

Introduction

• Modern SoCs increasing deployed in

– highly personalized activities

– critical aspects of our lives

• SoC implemented as

– composition of IPs and interconnects

– data including secure assets transferred

via shared interconnects across different IPs

• To provide sound security guarantees

– SoC has a security architecture

Authentication/

Managing access

IP1

IP2

IP3

Mem1

Mem2
Shared

Bus

Mem3

Specify the conditions under which a
secret asset can be accessed at
any point in the system execution.

6

Introduction

• SoC security validation utmost importance

• Non-interference

– Idea: certain parts of the system (secure zones) should never interfere with other
parts (insecure zones)

• Guaranteeing non-interference non-trivial and crucial task

– depending on the SoC security architecture

– information can flow through difficult-to-detect side channels

• Timing-based attacks interesting for attackers

– as they only need to measure the execution time of the victim process
without physical access to the design

• Access secret data at a very low cost and effort

7

Introduction - Functional Flow

• IP isolation technique w.r.t non-interference

– certain parts of the system (secure zones) should never interfere with other parts
(insecure zones)

– for SoC security validation, a common property needs to be checked is non-
interference

• Information Flow Tracking (IFT) promising solution

– powerful technique to help mitigate security vulnerabilities that violate certain
information flow policies

– Idea: monitoring how information propagates through a system to see if secret
information is leaking

8

Introduction - Timing Flow

• What are timing-based security attacks?

Process 1
Process 2

Decision

End

Start

1 0

t1

t2

The time taken by a (computational)
modules to generate the results may
be different (t1≠t2) regarding the
data being processed.

Attackers who are familiar with the
underlying algorithms use statistical
approaches to extract the key by
measuring the execution time.

9

Introduction – Why at ESL?

• Detection process

– cost of fixing any security flaws increases with
the stage of development

• For the early design entry

– Virtual Prototype (VP) increasingly adopted
by the semiconductor industry

– abstract and executable software model

– typically implemented using SystemC TLM-2.0

• VPs in comparison to RTL designs

– significantly faster simulation speed

– much earlier available

as early as possible

VP models

Netlist

RTL design

.cpp

.vhd/

.v

ESL

RTL

GateL .v

D
e
s
ig

n
 F

lo
w

10

Introduction - Why at ESL?

• This leads designers to use VPs for

– architectural exploration

– performance analysis

– early software development

– overall, reference models for lower levels of abstraction

• VP-based security validation

– to fix security vulnerabilities in SoCs before they are refined

– to avoid costly design loops occur

promising direction

Boost the
design

productivity

Architectural
exploration

Eliminating
time

consuming
RTL iteration

Early
software

development

11

Security Threat Models

Non-interference

Data of secure IP (e.g., data
stored in a secure memory) is

retrieved by an unauthorized IP.

IntegrityConfidentiality

Information flow in which
data of secure IP is modified

by an unauthorized IP.

Certain parts of the system (secure
zones) should never interfere with
other parts (insecure zones).

12

Security Threat Models

Non-interference

IntegrityConfidentiality

Explicit information flow results
from two modules directly

communicating.

Implicit information flows are
much more subtle and generally

leak information through behavior

ImplicitExplicit

13

Security Threat Models - Functional Flow

S
h
ared

 B
u
s

Interfering Secret Data

Step 1. Read Secure Data

Step 2. Write Secure Data

Step 3. Read Secure Data

• Motivating Example

In the case of explicit information flow: module Master_IP3
access memory Slave_mem3 through the shared interconnect
Shared-Bus.
In the case of implicit information flow, an implicit flow
causes sensitive data to be read from the secure memory
Slave_mem1 (step 1) by the trustworthy initiator module
Master_IP1 and then written to the shared memory
Slave_mem2 (step 2) which potentially is accessible by initiator
module Master_IP3 which belongs to untrusted zone (step 3).

14

Security Threat Models - Functional Flow

• Security Scenarios

– Third-party IP may contain malicious part to exploit the confidential data

– Malicious software running on the (trustworthy) hardware IP may exploit
hardware backdoors to cause malfunctions or leak secret data.

– An incorrect initialization (either by an adversary involved in the SoC design
process or unintentionally) of the SoC firmware (memory configuration file).

– The existing SoC is extended or modified but its information flow policies are
not updated.

15

Security Threat Models - Timing Flow

• Motivating Example Consider the security scenario that the authentication algorithm is implemented as a loop over all
characters of the authentication key. Once the two keys differ in a character, the comparison function
returns with false, and when only all characters are identical, is true returned. In this case, as long as
the characters in both trans_key and Skey are equal, the next character is compared. As soon as one
differs, the function returns. Since each additional comparison takes extra time, an unauthorized IP
(MPU2) can take advantage of this time difference to brute-force the character (by generating
transactions) for each position one at a time

16

Security Threat Models - Timing Flow

• Motivating Example

A possible solution to block this timing-
based information leakage flow is to fully
control the update on the result of the
authentication unit with a non-sensitive
variable. The authentication_blockage shows a
safe implementation of the authentication unit
where the key comparison is always performed
for the total length of the secret key and is not
dependent on the value of trans_key. In this
case, the final result is fully controlled by a
loop condition with non-sensitive variables i
and Skey. Thus the final result flag is
generated at constant time steps.

17

Vulnerability Detection Challenges

• Manual analysis of the source code

– a very time-consuming and error-prone task

• Testing the design to capture timing variations

– becoming impractical due to the scale of modern SoCs

• Existing methods are only applicable at RTL and below

– do not support SystemC constructs, data types and semantics

• IFT-based method at ESL

– only able to analyze the functional information flows

• The existing verification methods at ESL

– are not able to detect security threat models

– as the design functionality and protocol rules are not affected

18

Functional Flows Detection Methodology

1. Run-time Behavior Extraction

2. Transaction Transformation

3. Security Validation
Generating an instrumented version
of the VP source code for tracing
transactions at run-time.

Transforming the extracted
transactions into a set of
transaction flows.

• Translating the information
flow policies of design into a set
of security properties.

• Generated transaction flows are
validated against the generated
security properties.

M. Goli and R. Drechsler, “VIP-VP: Early Validation of SoCs Information Flow Policies using SystemC-based Virtual Prototypes,” FDL, pp. 1–8, 2021.

19

Functional Flows Detection Methodology

• Motivating example

– Run-time Behavior Extraction

The Recorder statements are defined based on a
hierarchical structure where for tracing transactions,
• reference address of transactions,
• root and instance name of the module,
• related parameters such as phase,
• run-time value of their attributes.

S
h
ared

 B
u
s

Assume we want to trace the flow of
transactions generated by the Master_IP1
module of the SoC. A part of the Master_IP1
module is shown in this slide where the
transaction object is used as an input
argument for the b_transport interface call.

20

Functional Flows Detection Methodology

• Motivating example

– Transaction Transformation

Transaction is created by an initiator IP

Transaction is received by a target IP

Implicit
flow

A complete simulation behavior of the VP
can be defined as a set of transaction flows.

This is a part of transaction flows
where TF1 to TF6 specify six explicit
transaction flows. For example, TF1
shows that a transaction is generated
by Master_IP3 to access data in
memory Slave_mem3. Here we can
also see the details of the flow.

Combination of transaction
flows TF2, TF4, and TF6
shows an implicit flow of
data between Master_IP3
and Slave_mem1.

S
h
ared

 B
u
s

21

Functional Flows Detection Methodology

• Motivating example

– Security Validation S
h
ared

 B
u
s

List of secure IPs
• initiator (source)
• target (sink)

List of forbidden information flows between source and sink

Explicit flows

22

Functional Flows Detection Methodology

• Motivating example

– Security Validation S
h
ared

 B
u
s

Three transaction flows required
to shape an implicit channel

Implicit flows

Secure IP reads secret data from

the secure memory (sink).

Secure IP writes the secret data
in an unauthorized memory.

Unauthorized IP (source) read
the secret data from the
unauthorized memory.

The algorithm take as inputs the set of secure
initiator IPs, secure target IPs, and forbid_flow.
Then, for each forbidden flow f, it generates
Three transaction flows required to shape an
implicit channel. The TFt property specifies a
transaction flow where a secure IP reads secret
data from the secure memory (in sink) specified
in f. The TFt+1 shows a transaction flow where
the secure IP writes the secret data in an
unauthorized memory. The TFt+2 describes the
transaction flow where the unauthorized IP
(source) specified in f read the secret data from
the unauthorized memory.

23

Functional Flows Detection Methodology

• Motivating example

– Security Validation S
h
ared

 B
u
s

From specification

The p1 and p2 properties ensure that
the Master_IP3 does not take
advantage of authorized Master_IP1 or
Master_IP2 to access confidential data
in secure memory Slave_mem1 via
shared memory Slave_mem2.

24

Timing Flows Detection Methodology

1. Static Data Extraction

– formally represening VP’s behavior

– CG and CFG

2. Timing Flow Analysis

– static taint tracing and path analysis

M. Goli and R. Drechsler, “Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs,” ICCAD, pp. 1–8, 2021.

M. Goli and R. Drechsler, “ATLaS: Automatic Detection of Timing-based Information Leakage Flows for SystemC HLS Designs,” ASP-DAC, pp. 67–72, 2021.

25

Timing Flows Detection Methodology

• Motivating example

– Security Properties Definition

Part of design with High Security (HS) tag

Part of design in which the time taken
for it to reach its final value must be
Constant (CT) as the source changes.

Under which condition is the
data valid at source and sink.

In the security property P1, variable sec_key is an
attribute of the transaction which is defined in its
extension filed to hold the authentication data for
all generated transactions by the MPU1 module in
the thread_process(). The permission variable
belongs to the access control policy of the
SharedBus in its b_transport function and holds
the authentication result. The property ensures that
the permission variable must obtain the result in
constant time as sec_key changes.

26

Timing Flows Detection Methodology

• Motivating example

– Static Data Extraction

A part of the generated CG of the motivating
example w.r.t security property shown in the
previous slide. Each node of the CG is a
transaction’s attribute, its related parameter or a
variable of the VP which is tokenized by the name
of module and function (for local variable) to which
the transaction or variable belongs. The dot-box in
the CG shows the function calls graph, started from
initiator module MPU1 by calling thread_process()
and goes through the b_transport() function of
the SharedBus. Thus, this graph identifies how the
source (node n0) is connected to sink (node n2)
through the intermediate variables.

Data Dependency Graph
Data Flow Graph

In order to know whether
conditional updates caused by
sensitive data, we need to
extract the control flow of a
given VP. A part of the generated
CFG of the motivating example
w.r.t security property. The gray
nodes show the control flow
statements (meaning condition
node type like, if-else). The white
nodes indicate the computational
statements.

27

Timing Flows Detection Methodology

• Motivating example

– Timing-based Data Flow Analysis

After generating a formal representation of a given VP-based SoC behavior, we perform a timing
flow analysis to detect all conditional updates caused by the sensitive data. For each property Pi,
a taint analysis is performed on the corresponding generated CG and CFG. The taint analysis
identifies how the sensitive data (source) affects or taints other transactions and variables inside
a system. First, the taint analysis is performed by a forward tracing on the CG from the source
node to the sink node. All nodes in this trace that are related to the source get the HS tag and
are added into the list of source taints L_st. In the next step, the CFG of the VP is analyzed to
find all control statements including sensitive variables, transaction’s attributes or its related
parameters (stored in L_st) that control the occurrence of updates on sink.

List of source taints of the VP after tracing
its CG is L_st = {n1 , n3 , n4 }.

28

Timing Flows Detection Methodology

• Motivating example

– Timing-based Data Flow Analysis

The first condition type node in the CFG of the VP is L23
whose control variables {i, SKey} are not in the list of source
taints (L_st). Therefore, the analysis continues to the next
condition node which is L24 whose control variables are
{trans_key, SKey}. Since trans_key is in list of source taints,
further analysis is performed on the child nodes of L24 . The
result of DFS analysis shows that there are two paths p1 and
p2. As p2 includes a condition type node (L23), it is
eliminated from Lpath. Thus, p1 is the only member of Lpath
whose L35 includes sink. In this case, L24 and path p1 are
stored in TF and reported back to designers.

29

Timing Flows Detection Methodology

• Motivating example

– Timing-based Data Flow Analysis

sink

On the other hand, analyzing the CFG-Blockage shows that there
is no timing flow in the VP as there is no explicit path from
conditional node L∗5 (which its control variable {trans_key} is in
Lst) to the sink. The only available path (p1) is through the
condition node L∗4 which is eliminated from Lpath as includes a
condition type node (L∗4) . Therefore, the Lpath for this condition
node (L∗5) is empty. As we can see in this graph, the update on
sink (node L35) is fully controlled by the condition node L∗4 which
does not have any sensitive variables.

30

Conclusion

• Validation of a given SoC’s security architecture against functional and timing
flows are of utmost importance.

• For functional flow analysis, we take advantage of a dynamic information
flow analysis, performed by automatically extracting the run-time simulation
behavior (TLM transactions) of VPs.

• In the case of timing flow analysis, at the heart of the approach is a scalable
static information flow analysis that operates directly on the AST of
SystemC VPs.

• We show how the analysis formally represents the behavior of a given VP
in terms of data and control flows.

• The proposed methodologies are automated, fast, and do not rely on any
commercial tool for their analysis.

31

Thank you!

Validation of SoCs Security Architecture:
Challenges, Threats, and Methods

Mehran Goli

University of Bremen, Germany

DFKI Bremen, Germany

mehran@uni-Bremen.de

April 24-28, ICONS 2022

