Celine Haugan Lia and Mo Mansouri 238356@usn.no and mo.mansouri@usn.no

A SYSTEMS APPROACH TO PARKING ASSIST SYSTEM: INVESTIGATING TEST AND VERIFICATION METHODOLOGY

University of South-Eastern Norway

Celine Haugan Lia 238356@usn.no

Presenter Resume

- Systems Engineering Industry master student at University of South-Eastern Norway. (Year 2 of 3)
- Working part-time as a project engineer/test engineer at Kongsberg Defence & Aerospace.
- Write documents (test specifications, test reports, system verification plan etc.) and test the systems both functionally and in environmental settings.
- Mechanical Engineering Bachelor degree from University of Derby, England (2017-2020).

Agenda

- Introduction
- Background and System Description
- Problem Context
- System Decomposition
- Test, Verification and Validation
- CATWOE
- Systemigram
- Conclusion
- Future Work
- References

Introduction

- Size and number of vehicles increased resulting in busier roads.
- Limited view, randomness and human behavior is unpredictable.
- Toyota introduced the ultrasonic back sensor as far back as 1982.
- First rear park assist system (semi-autonomous parking) was introduces in 2003.
- Nissan introduced the surrounding-view parking monitor in 2007.

Background and System Description

- Evolving technology
- Sensors
 - Ultrasonic sensor (most common)
 - **Electromagnetic sensor**
 - **R**adar
- 360° View (Birdsview)
- Reverse AEB (Autonomous Emergency Braking)

Event	Fatalities	Injuries
Non-occupant in Non-traffic Crash: Backing Vehicle	99	2,000
Non-occupant Struck by Driverless Vehicle	5	<500
Non-occupant in Non-traffic Crash: Forward-Moving Vehicle	106	3,000
Total (approx)	210	5,000

NHTSA Non-traffic fatalities and injuries 2007 (D. Moore, 2021)

Problem Context

- Cars are getting bigger, traffic and the number of vehicles on the road is increasing.
- High demand for parking spaces.
- Parking lots are where one of five motor vehicle accidents happen in the US.
- Top causes of parking lot injuries:
 - Loss of focus on surroundings (other cars, pedestrians, or obstacles)
 - Backing out of a spot and not being aware of surroundings.
 - Pedestrians and other moving vehicles in the drives blind zone.

System Decomposition

Conditions:

- Detect obstacles in the surrounding environment.
- Measure and estimate the distance to obstacles.
- Provide a planned route to park.
- Provide a real-time display to the driver during the parking sequence.

Test, Verification and Validation

 Parking Assist Test Company (VBOX Racelogic)

- BMW X5 Parking Assist Test
 - System performance tests in empty parking lot using other vehicles, suitcases and people as obstacles.
 - Parallel, perpendicular parking, and exit assist.

CATWOE A framework for problem formulation

- A systematic way of formulating the problem
- The CATWOE approach illustrates the different actors and stakeholders and their perception on a topic. In this case the CATWOE approach is done from the company's perspective.

ASPECT	DESCRIPTION
CUSTOMERS – who are the beneficiaries/victims?	Drivers
ACTOR(S) – who are the implementers?	The car manufacturers (software, electronics, and test department)
TRANSFORMATION – what does the system do? What are the inputs and what transformation do they go through to become the output.	Signals and communication between different subsystems.
WORLD VIEW – what point of view justifies its existence to the customers?	Verify the subsystem.
What point of view makes this system meaningful?	Validation of system that it works as it should.
The big picture and its impact.	
OWNER – who has the authority to change the system?	Authorities like DMV (Department of Motor Vehicle in USA), DVLA (Driver and Vehicle Licensing Agency in England) or Biltilsynet in Norway can set requirements.
ENVIRONMENT – What are the external constraints?	Guidelines, rules, and regulation in the traffic. Randomness and human behavior.

Systemigram A visual systems language

- A System diagram or Systemigram will be used to map the parking assist system.
- This systems thinking tool is used to explain the interactions between several, interrelated elements and is a great tool to get an overview over all the elements and decompose complex systems

Conclusion

- PAS is a priority technology
- Specific equipment and software to test and verify the system
- Small and complex system that has evolved since 2003 when the first rear parking sensors appeared.
- New way of looking at a complex system.
- For a system or problem that has a lot of agents, a better solution can be to look at all of the agents.

- Systems thinking gives us a framework for thinking holistically and suggests several tools and frameworks that help us think that way. CATWOE and Systemigram are two examples.
- CATWOE to summaries the problem definition.
- Systemigram to summarize the visual story of the system.
- Thinking this way will be helping the situation to be solved more inclusively.

Future Work

- Collect data and figure out the system dynamics.
- Make the system dynamics, and design of system in a systematic way.
- Use systems thinking approaches to see the system from other perspective.

References

S. Gautam, "A Brief History of Car Parking Technology - Get My Parking Blog.", 2019. [online] Get My Parking Blog. Available at: https://blog.getmyparking.com/2019/04/08/a-brief-history-of-car-parking-technology/> [Accessed 30 June 2021].

P. Maric, "How do parking sensors work? Parking tech, radar & remote hands free explained!", 2020. [online] Youtube.com. Available at: https://www.youtube.com/watch?v=uDpaB_1kIdA [Accessed 9 July 2021].

Rts.i-car.com, "Understanding The Park Assist System.", 2017. [online] Available at: https://rts.i-car.com/collision-repair-news/understanding-the-park-assist-system.html> [Accessed 9 July 2021].

D. Moore, "Parking lot accidents: statistics, causes, and liability -MyParkingSign Blog.", 2021. [online] MyParkingSign Blog. Available at: https://www.myparkingsign.com/blog/parking-lot-accidents/> [Accessed 6 July 2021].

E. Szadeczky-Kardoss, and B. Kiss, "Path Planning and Tracking Control for an Automatic Parking Assist System", 2008. [online] Available at: https://www.researchgate.net/publication/225220433_Path_Planning_and_Tracking_Control_for_an_Automatic_Parking_Assist_System [Accessed 6 July 2021].

Zen Micro Systems. 2020. "Park Assist - Zen Micro Systems." [online] Available at: https://www.zenmicrosystems.co.in/park-assist/ [Accessed 10 August 2021].

Rts.i-car.com. 2016. "Typical Calibration Requirements For Park Assist Sensors. " [online] Available at: https://rts.i-car.com/collision-repair-news/typical-calibration-requirements-for-park-assist-sensors.html [Accessed 10 August 2021].

S. Gautam, "Smart Parking Assist Explained: How it Works - Get My Parking Blog. ", 2020. [online] Get My Parking Blog. Available at: https://blog.getmyparking.com/2020/06/26/smart-parking-assist-explained-how-it-works/> [Accessed 12 August 2021]. O. Buhler, and J. Wegner, "Automatic Testing of an Autonomous Parking System using Evolutionary Computation. SAE Technical Papers," 2004. [online] Available at: https://www.researchgate.net/publication/267402961_Automatic_Testin_of_an_Autonomous_Parking_System_Using_Evolutionary_Computation> [Accessed 9 July 2021]

G. Voinea, C. Postelnicu, M. Duguleana, G. Mogan, and R. Socianu,, "Driving Performance and Technology Acceptance Evaluation in Real Traffic of a Smartphone-Based Driver Assistance System. International Journal of Environmental Research and Public Health", vol. 17, no. 19, p.7098, 2020

R. Haugen, and M. Mansouri, "Applying Systems Thinking to Frame and Explore a Test System for Product Verification; a Case Study in Large Defence Projects." INCOSE International Symposium, vol. 30, no. 1, pp.78-93, 2020.

C. Witte and M. Mansouri, "Analyzing the effects of connecting Norway's remote communities to large cities using the Systems Thinking approach," INCOSE International Symposium, vol. 30, no. 1, pp. 1219-1234, 2020.

J. Boardman and B. Sauser, "Systems Thinking: Coping with 21st Centurty Problems." 2008, Boca Raton, FL: Taylor & Francis / CRC Press.

M. Mansouri, B, Sauser, and D. Boardman. "Applications of Systems Thinking for Resilience Study in Maritime Transportation System of Systems.", 2009.

R. Edson, "Systems Thinking. Applied. A Primer.", 1st ed. ASysT, p.21, 2008.

B. Sauser, M. Mansouri, and M. Omer. "Using Systemigrams in Problem Definition: A Case Study in Maritime Resilience for Homeland Security. Journal of Homeland Security and Emergency Management", vol. 8, no. 1, 2011.

H. Jung. "Semi-automatic parking slot marking recognition for intelligent parking assist systems. The Journal of Engineering", no. 1, pp.8-15, 2014