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1. General context

5G network slicing
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% Future networks will support a multitude of services thanks to slicing. 3]
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2. Problematic
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NSSE Network Slice Selection Function, UDM: Unified Data Management, NRF. Network Repository Function,
AUSE Authentication Server Function, AMF: Access and Mobility Management Function, SMF: Session
Management Function, UPF: User Plane Function, PCF: Policy Control Function
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The reconfiguration of 5G
network slices is a reallocation of
the Network Function
Virtualization (NFV) to adapt the
utilization of network resources
to the occurred changes.

The VNF migrations are performed
by two types of migrations:

Hot migration the running VNFs
are moved between the source and
target servers without
disconnecting the service or
application. [4]

Cold migration the VNFs are
moved  between servers by
powering off the VNF on the
source server, moving it to the
target server then powering it back
up on the target server.



2. Problematic
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- Service interruption (interruption

duration)

- Duration of total migration process

- Slice Service Level Agreement (SLA)

penalities (availability ..)
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Constraints ts VNF Migratibromode de:

- Server Capacity - Hot migration
- VNF migration duration

- Dedicated and shared VNF

—

- Cold migration
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3. State of the art

< A lot of studies tackle the NP-Hard problem of VNF/VM placement [5][6][7][8][9] .. But, how to
execute the migrations to reach a given placement is even less tackeled?

< Few research studies are dealing with the VNF reconfiguration problem

<> The problem of dynamic management and optimization of reconfiguration plans for slicing
has been less treated !
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4.1 Problem modeling % The problem of VNF reconfiguration can be seen as :

a) A multi-dimension multiknapsack reconfiguration problem
(The multidimensionality stands on the number of resources concerned(i.e.,
CPU and memory), while the knapsack aspect is captured by the servers,
each of them representing a knapsack. )

b) Ordering edges of a graph
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« If the graphis acyclic there is a feasiblesolutionwithout interruption [10] and catbe foundin polynomial
time [11]using Topological Sorting (TS) algorithm.
«» If the graphis cyclic the solutionis not necessarilyeasiblewithout interruptions.



4.2 Problem solving

Theidea: Modelizethe statedynamicsof
L\ ‘* the serverduringstages of VNFs migrations

The problems NR-Hard,it ismodeledby integerlinearprogramming:

* The objectivefunction: Minimizethe migration and interruption duration.

» Decisionvariables arebinaryvariablesjndicatingthe stagewherew 0 "@ migratedor interrupted.

= Capacityconstraint we calculatethe capacityof eachserver s atachstage kaccordingo the interruption/ the
migrationof VNF.

» Integrity constraint insuresthat eachVNF carbe migratedonlyin the destinationserver, andt canbe interrupted
onlyin the sourceserver.

= VNF Migration durationconstraint findsthe maximum migration duratiothat shouldbe minimized

= Interruption duration constraint The interruption duration is considered as the number of stages between the VNF
interruption and VNF migration. In live migration the interruption duration is negligible. In cold migration, the VNF
interruption is performed at least in one staggoth of live and cold migration a@akeninto consideration



4.2 Problem solving

ILP model

TABLE I
TABLE OF NOTATIONS
Notation Description
N number of stages
Ny number of VNFs
Ny number of servers
k order / stage of the reconfiguration
Lk a binary variable indicating that V NV F} is migrated in order k
Yik a binary variable indicating the stage where VN F; is interrupted in source
host
Oy set of VNFs originating from server s
Dy set of VNFs targeting server s
ok represents the residual CPU capacity of server s in stage k
RE represents the residual RAM capacity of server s in stage k
cap?” " represents the occupied CPU capacity of VN F;
cap ™ represents the occupied RAM capacity of VN F;
&; represents the interruption duration of VN F;
T represents the migration duration of a given VN F
Bi represents the cost of service interruption, which is the SLA availability of
each VN F;
o represents the migration cost of all VNFs
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o 1, if the VNI is migrated in stage & ;
Tik = 0, otherwise.

0, otherwise.
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5. Experimental Results

Fig_:]_ (a). The VNFs migration with the SLA availability
according to each service slice.
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Fig.2 (a). The total migration and interruption according to a variations.
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Migrate NSSF to S3
Migrate AUSF to S4
Migrate SMF to S3
Migrate UPF to S1
Migrate PCF to S5

Migrate NRF to S2
Migrate UPF to S4
Migrate UDM to S1
Migrate PCF to S4
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Fig,]_ (b). The reconfiguration plan for all slices.
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Fig.2 (b). The interruption duration of each slice.

All the experiments were conducted @anmachine
with Core i76600U CPU and 16 Go of RAM
Datasets are randomly generated with different
sizes of graphs usindetworkXof python

The ILP model is solved usthg CPLEX
OptimizationStudio V12.8

N =100% High availability
min(z Bidi +aT) T > 99% Average availability
i=1 <99% Low availability

0 The ILP model finds the optimal
solution that minimizes both of
migration and interruption duration.

0 The ILP model takes into consideration
the availability of each slice while
minimizing the interruption duration.



5. Experimental Results

Evaluation according to the nature of datasets — Acyclic graph
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Fig.3 (b). Percentage of migrated VNFs per
steps of migrations.

Fig.3 (a). Total migration duration.

0 The ILP model solves the VNF reconfiguration problem without
interruption and with 0% of optimality gap.

0 The ILP finds the optimal solution that minimizes the migration
duration while the Topological Sorting (TS) algorithm [12][13] finds
a feasible solution without taking into consideration the migration
duration.

0 The ILP gives a solution where the VNFs are migrated from the
early steps and in parallel as long as possible, and with minimum
migration duration.

TABLE II
DATASETS OF ACYCLIC GRAPHS

Instances | Servers VNFs Slices
DC-acy1 10 25 6
DC-acy2 | 20 35 11
DC-acy3 | 40 60 12
DC-acy4 | 50 120 24
DC-acy5 | 80 150 35

TABLE IV

COMPARISON BETWEEN THE ILP MODEL AND TS ALGORITHM FOR
ACYCLIC GRAPH

Instances | ILP: Exe- | ILP: Best | TS: TS: Best
cution time | objective Execution objective
(s) time (s)

DC-acyl (.33 3 0.000532 25

DC-acy2 1.06 3 0.000324 35

DC-acy3 | 2.08 3 0.000949 60

DC-acy4 17.76 4 0.001346 80

DC-acy5 | 36.19 4 0.001257 150




5. Experimental Results Evaluation according to the nature of datasets — Cyclic graph
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Fig.5 (a). Total migration duration. Fig.5 (b). Percentage of migrated VNFs per
steps of migrations.

0 The ILP provides an interesting solution in terms
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Fig.6 (a). Ratio of interrupted VNFs. Fig.6 (b). Interruption duration for each instance.




6. Conclusion

Conclusion

0 We have proposed an ILP-based solution for the problem of slice reconfiguration in the
context of 5G networks.

0 We evaluate the proposed model according to the service importance taking into
consideration the SLA availability metric, and according to the nature of datasets
whether it is an acyclic or cyclic graph.

0 The evaluation results show that the ILP model yields good solutions, in terms of
minimizing the total migration and VNF interruption duration, and respecting the Slice
SLA availability.

Future work

0 We plan to propose a heuristic based on topological sorting algorithm in order to
improve the convergence time and allow dealing with larger instances.
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