Study of Zero-shot Learning for Visual Search on Satellite and Aerial Images

A. Chuong Dang, Ion-George Todoran, Srushti Rashmi Shirish

June $26^{th} - 30^{th}$, 2022

Presenter: A. Chuong Dang [DC]

Title: Machine Learning Engineer Email: dang.anh.chuong@woven-planet.global

A. Chuong Dang [a.k.a: DC]

Email: dan.anh.chuong@woven-planet.global

Education:

- Bachelor in Mechanical Engineering, Tohoku University, JAPAN.
- Master Degree in Information Science, Tohoku University, JAPAN.

Profession:

• Machine Learning Engineer at Automated Mapping Platform, Woven Alpha Inc., Woven Planet Holdings Inc. Member of Machine Learning Platform team, Unified Pipeline.

Interest:

• Development/Applications of Machine Learning, Deep Learning algorithms.

Motivation

- Top-down images are <u>semantically complex</u>.
- Satellite image source is <u>abundant</u>, but <u>low</u> <u>utilization</u>.
- Difficulty in efficient data managing.

Research Summary

In this study, we:

- Present a Visual Search system based on <u>latest</u>
 <u>Deep Learning</u> techniques.
- Propose to <u>mitigate diverse categories issue</u> by *"zero-shot learning"* method.
- Introduce to improve system performance by <u>pre-</u> <u>training</u> feature embedding model <u>using top-down</u> <u>images</u>.
- Study the possibility of applying <u>unsupervised</u> <u>method</u> to alleviate the problem of <u>lacking labeled</u> <u>data</u>.

Approach

Research questions:

- How the data effects system performance?
- How important is the role of feature extractor?
- How to utilize data source better?

Experimental Settings:

- Datasets: UC Merged Land Use, AID, RESISC45.
- DNNs: ResNet, Vision Transformers (ViT).
- Training methods: supervised and unsupervised.

Results I

Confidential

Supervised pre-trained using photographic versus aerial imagery datasets

Test dataset	Pre-trained dataset	mAP	R@1		Pre-trained dataset	mAP	R@1
	ImageNet1k	<i>58.9</i>	92.9		AID (x224)	60.0	91.0
UC Merged Land Use	Places365	54.3	90.2		AID (x320)	62.7	90.9
USE	ImageNet1k & Place365	57.5	92.6		RESISC45	<u>78.6</u>	<u>95.9</u>
AID	ImageNet1k	44.6	85.4			<u>69.3</u>	<u>89.2</u>
	Places365	42.3	83.3	11	RESISC45		
	ImageNet1k&Place365	44.4	84.0	Bitter			
	ImageNet1k	34.0	78.7		AID (x224)	44.0	<u>80.9</u>
RESISC45	Places365	33.2	77.9		. ,		
	ImageNet1k & Place365	35.0	80.3		AID (x320)	43.4	79.6

- Pre-trained on aerial imagery datasets have a <u>positive</u> effect on system performance.
- Pre-trained using <u>unsupervised</u> method?

Results II

Unsupervised pre-trained using aerial imagery datasets

- Improved/<u>comparative</u> system <u>performance</u> yet may not surpass supervised methods.
- Help to <u>utilizing large</u> amount of <u>unlabeled</u> data.
- Only helpful when having access to a <u>decent</u> <u>amount</u> of <u>data</u>.

3	Test dataset	Pre-trained dataset	mAP	R@1
	UC Merged Land Use	ImageNet1k	58.9	94.7
		AID	55.0	93.1
		RESISC45	63.0	93.8
AID		ImageNet1k	46.7	88.6
	AID	RESISC45	<i>52.</i> 1	<i>90.</i> 1
F	RESISC45	ImageNet1k	36.6	84.6
		AID	36.1	84.0

Confidential

Results III

Vision Transformer (ViT) as feature extractor

	Test dataset	Backbone architecture	Pre-trained dataset	Pre-trained method	mAP	R@1
	UC Merged Land Use	ResNet50	lmageNet1k		58.9	94.7
		ViT-S/16			63.3	95.7
		ViT-S/8			67.0	95.4
1	AID	ResNet50			46.7	88.6
		ViT-S/16		Unsuppervised	49.8 <i>53.7</i>	90.2
		ViT-S/8				91.7
	RESISC45	ResNet50			36.6	84.6
		ViT-S/16			39.7	86.9
		ViT-S/8			43.0	88.8

- Utilizing latest DNNs architecture improved performance of the system by a good margin.
- Still existing <u>challenges</u> and <u>drawbacks</u>.

Confidential

Results IV

Confidential

Ablation Study: Impact of removing feature dimensionality reduction

Test dataset	Dimension Reduction Method	Test dataset	Pre-trained dataset	Pre-trained method	mAP	mAP drop↓	R@1	R@1 drop↓
ResNet50	PCA		lmageNet1k		46.7	5.1↓	88.6	0.6↓
	None			Unsuppervised	41.6		88.0	
ViT-S/16	PCA	AID			49.8	<u>4.5</u> ↓	90.2	<u>0.3</u> ↓
	None	AID			45.3		88.9	
ViT-S/8	PCA				53.7	4.8↓	91.7	1.1↓
	None				48.9		90.6	1.1↓

- Removing dimension reduction method yields <u>negative impact</u> on system's performance.
- <u>Necessity</u> of using dimension reduction method in case which requires <u>high accuracy</u>.
- Yet, dimension reduction is <u>not scalable</u> → further research!

Visualization results

Challenges and next steps

Challenges (further study):

- Further experiment with ViTs and unsupervised training.
- Research towards scalable dimension reduction method.
- Improve system performance evaluation process.

Next steps (application investigation):

- Define tiling strategy.
- Indexing at large scale.
- API for query images.

References

- 1. M. Tarasiou and S. Zafeiriou, "DeepSatData: Building large scale datasets of satellite images for training machine learning models," CoRR, abs/2104.13824, 2021.
- 2. S.Bell and K. Bala, "Learning visual similarity for product design with convolutional neural networks," ACM Trans. Graph., Vol. 34, No. 4, pp 1–10, 2015.
- 3. K. Sohn, "Improved Deep Metric Learning with Multi-class N-pair Loss Objective," NIPS, 2016.
- 4. R. Keisler, S. Skillman, S. Gonnabathula, J. Poehnelt, X. Rudelis, and M. Warren, "Visual search over billions of aerial and satellite images," Comput. Vis. Image Underst. vol. 187, Issue C, pp 1-6, 2019.
- 5. The SpaceNet Partners, "SpaceNet5: Automated Road Network Extraction and Route Travel Time Estimation from Satellite Imagery," https://spacenet.ai/sn5challenge/, Accessed May 5th 2022.
- 6. J. Johnson, M. Douze, and H. JÅLegou, "Billion-scale similarity search with GPUs," IEEE Transactions on Big Data, vol. 7, No. 3, pp. 535-547, 2019.
- 7. C. Wengert, M. Douze, and H. JÅLegou, "Bag-of-colors for improved image search," In ACM Multimedia, pp.1437–1440, 2011.
- 8. M. Park, J. Jin, and L. Wilson, "Fast content-based image retrieval using quasi-gabor filter and reduction of image feature dimension," Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, 2002.
- 9. R. Arandjelovic and A. Zisserman, "Three things everyone should know to improve object retrieval," CVPR, 2012.
- 10. A. Krizhevsky and G. Hinton, "Using very deep autoencoders for content-based image retrieval," in Proceedings of the European Symposium of Artifical Neural Networks (ESANN), 2011.
- 11. J. Ng, F. Yang, and L. Davis, "Exploiting local features from deep networks for image retrieval," CVPR Workshops, 2015.
- 12. G. Tolias, T. Jenicek, and O. Chum, "Learning and aggregating deep local descriptors for instance-level recognition," ECCV, 2020.
- 13. D. Yi, Z. Lei, S. Liao, and S. Z. Li, "Deep metric learning for person re-identification," 22nd International Conference on Pattern Recognition, 2014.
- 14. W. Ge, W. Huang, D. Dong, and M.R. Scott, "Deep metric learning with hierarchical triplet loss," ECCV, 2018.
- 15. M. Everingham, S.M.A. Eslami, L. Van Gool, C.K.I. Williams, J. Winn, and A. Zisserman, "The Pascal visual object classes challenge: A retrospective," International Journal of Computer Vision, vol. 111, no. 1, pp. 98-136, 2015.
- 16. H. JÅLegou, M. Douze, and C. Schmid, "Product quantization for nearest neighbor search," In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 117-128, 2011.
- 17. Y.Yang and S. Newsam, "Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification," ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS), 2010.

References

- 18. G.-S. Xia, J.Hu, F. Hu, and B. Shi, "AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification," In IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3965-3981, 2017.
- 19. G. Cheng, J. Han, and X. Lu, "Remote Sensing Image Scene Classification: Benchmark and State of the Art," In Proceedings of the IEEE, vol. 105, no. 10, pp. 1865-1883, 2017.
- 20. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei, "Imagenet: A large-scale hierarchical image database," CVPR, 2009.
- 21. B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, "Places: A 10 million image database for scene recognition," In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1452-1464, 2018.
- 22. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," CVPR, 2016.
- 23. M. Caron, H. Touvron, I. Misra, H. JÅLegou, J. Mairal, P. Bojanowski, and A. Joulin, "Emerging Properties in Self-Supervised Vision Transformers," ICCV, 2021.
- 24. G. H. Golub and C. Reinsch, "Singular Value Decomposition and Least Squares Solutions," In: Bauer, F.L. (eds) Linear Algebra. Handbook for Automatic Computation, vol 2. Springer, 1971, pp.134-151.
- 25. Z. Zhong, L. Zheng, D. Cao, and S. Li, "Re-ranking Person Reidentification with k-reciprocal Encoding," CVPR, 2017.
- 26. K. Pearson, "LIII. On lines and planes of closest fit to systems of points in space," The London, Edinburgh, and Dublin philosophical magazine and journal of science, Series 6, vol. 2, Issue 11, pp.559-572, 1901.
- 27. A. Dosovitskiy, et al., "An image is worth 16x16 words: Transformers for image recognition at scale," ICLR, 2021.
- 28. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. "Momentum Contrast for Unsupervised Visual Representation Learning," CVPR, 2020.
- 29. X. Chen, H. Fan, R. Girshick, and K. He. "Improved Baselines with Momentum Contrastive Learning," CoRR abs/2003.04297, 2020.
- 30. X. Chen, S. Xie, and K. He. "An Empirical Study of Training Self-Supervised Vision Transformers," ICCV, 2021.
- 31. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. "A Simple Framework for Contrastive Learning of Visual Representations," ICML, 2020.
- 32. J.B. Grill, et al., "Bootstrap your own latent: A new approach to selfsupervised Learning," NeurIPS, 2020.
- 33. X. Chen and K. He. "Exploring Simple Siamese Representation Learning," CVPR, 2021.

