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Motivation

* Top-down images are semantically complex.
« Satellite image source is abundant, but low
utilization.

« Difficulty in efficient data managing.
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Research Summary

In this study, we:

* Present a Visual Search system based on latest

Deep Learning techniques.

* Propose to mitigate diverse categories issue by

‘zero-shot learning “method.

 Introduce to improve system performance by pre-

training feature embedding model using top-down

images.

« Study the possibility of applying unsupervised
method to alleviate the problem of lacking labeled

data.

woven
') planet

Image Database l

*
N

Image feature

Network embeddings

Deep Neural distribution in the ' |

Confidential




Approach

Focus of this study
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Experiment evaluation

Research questions:

* How the data effects system performance?
* How important is the role of feature extractor?

e How to utilize data source better?
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Experimental Settings:

* Datasets: UC Merged Land Use, AID, RESISCA45.
* DNNSs: ResNet, Vision Transformers (ViT).

» Training methods: supervised and unsupervised.
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Test dataset Pre-trained dataset -m

Pre-trained dataset --

ImageNet1k AID (x224) 60.0 91.0
UCMergedland  pigces3ss 543  90.2 AID (x320) 627 909
ose ImageNet1k & Place365 57.5 92.6 RESISC45 78.6 95.9

ImageNet1k 44.6 854
AID Places365 42.3 83.3 RESISC45 69.3 89.2

ImageNet1k & Place365 44.4 84.0

ImageNet1k 34.0 78.7 AID (x224) 44.0 80.9
RESISC45 Places365 33.2 77.9

ImageNet1k & Place365 350 803 AID (x320) 434 796

« Pre-trained on aerial imagery datasets have a positive effect on system performance.
* Pre-trained using unsupervised method?
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Results Il

Unsupervised pre-trained using aerial imagery datasets
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Improved/comparative system performance Test dataset Pre-trained dataset

yet may not surpass supervised methods.

—_ ImageNet1k
Help to utilizing large amount of unlabeled

UC Merged Land AID

data. Use
Only helpful when having access to a decent RESISC45
amount of data. mageNet 1k
AID
RESISC45
ImageNet1k
RESISC45
AID

58.9
55.0
63.0

46.7

52.7

36.6
36.1

94.7
93.1
93.8

88.6

90.7

84.6
84.0
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Results Il

Test dataset Backbone Pre-trained Pre-trained
architecture dataset method
ResNet50

ot e
ViT-S/8
ResNet50

AID ViT-S/16 ImageNet1k  Unsuppervised
ViT-S/8
ResNet50

RESISC45 ViT-S/16
ViT-S/8

« Utilizing latest DNNs architecture improved performance of the system by a good margin.

« Still existing challenges and drawbacks.

MmAP

58.9
63.3
67.0
46.7
49.8
53.7
36.6
39.7
43.0

94.7
95.7
95.4
88.6
90.2
91.7
84.6
86.9
88.8
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Results IV

Dimension
Reduction

Test dataset

Pre-trained
dataset

Pre-trained
method

MmAP
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Method

PCA
ResNet50
None

PCA
ViT-S/16
None

PCA
ViT-S/8
None

AID

ImageNet1k

Unsuppervised

46.7
41.6
49.8
45.3
53.7
48.9

511

88.6
88.0
90.2
88.9
91.7
90.6

* Removing dimension reduction method yields negative impact on system’s performance.
* Necessity of using dimension reduction method in case which requires high accuracy.
* Yet, dimension reduction is not scalable — further research!
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Results V Confidential

Visudlization results
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Challenges and next steps

Challenges (further study):

* Further experiment with ViTs and unsupervised
fraining.

* Research towards scalable dimension
reduction method.

* Improve system performance evaluation
process.

Next steps (application investigation):
* Define tiling strategy.

* Indexing at large scale.

« APIfor query images.
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