TURVC

12th International Conference on Smarts Grids, Green Communications and IT Energy-aware Technologies

> 22 May, 2022 to 26 May,2022 Venice, Italy

Performance of Linear Programming in Optimizing the Energy Schedule of a Grid-connected Hybrid System Compared to Particle Swarm Optimization

Hoda ELAOUNI^{1,2}

Hussein Obeid¹, Stéphane Le Masson², Olivier Foucault² et Hamid Gualous¹

1. LUSAC Laboratory, University of Caen Normandy,

2. Orange Innovation, Lannion France

Integrate **renewable energies** in the energy production of the Telecoms sites.

Minimize the energy cost of the Telecoms sites.

Interconnect the Telecom sites.

Optimize the **energy exchanged** between two Telecoms sites.

Problematic:

How to optimize the energy between two Microgrids (sites) **globally** and **locally**?

Architecture of the site 1 (Microgrid)

A. SYSTEM DESCRIPTION

Assumptions:

ԼԱՏՋՇ

- Load demand is constant. .
- No sale of energy to the Grid. .
- Charging battery should be only by the remaining ٠ energy.
- W_{exch} refers to the energy lost.

Input	Modeling	Constraintes	Objective function	Optimization
Meteorological data (Sunshine, Wind speed, Load demand). Purchased energy price	Calculate the renewable energy production (i,e,, PV, and Wind Turbine)	 Energy balance Maintain the values of ((W_g, W_b, and W_{exch}) within their 	Minimize the • operating cost of the architecture studied.	Determine the optimal value of $(W_g, W_b \text{ and} W_{exch})$
•	Define the battery	lower and		

upper bounds.

TURVC

B. OPTIMIZATION ALGORITHM

Linear Programming (LP)

- 1. An exact optimization method.
- 2. A mathematical modeling technique.
- 3. The objective function and constraints must be linear.

Particle Swarm Optimization (PSO)

- 1. A bio-inspired algorithm (behavior of birds).
- 2. An heuristic optimization method.
- 3. The optimization performance stands into the choice of the PSO parameters.

Methodology

5

B. OPTIMIZATION ALGORITHM

1. Linear Programming Model

• Penalty function:

$$\mathbf{k}(\mathbf{t}) = \begin{cases} \mathbf{1}, & \text{if } \mathbf{d}(\mathbf{t}) \ge \mathbf{0} \\ \mathbf{0}, & \text{Otherwise} \end{cases}$$

$$\mathbf{d}(\mathbf{t}) = \mathbf{W}_{l}(\mathbf{t}) - \mathbf{W}_{pv}(\mathbf{t}) - \mathbf{W}_{wt}(\mathbf{t})$$

- Constraints:
- Energy balance:

 $d(t) = k(t) (W_g(t) - W_d(t)) + (k(t) - 1)(W_c(t) - W_{exch}(t))$

• Battery:

$$\begin{split} SOC(t+1) &= SOC(t) + \frac{\left(1-k(t)\right)W_c(t) + k(t)W_d(t)}{E_c}\\ SOC_{min} &\leq SOC(t) \leq SOC_{max}\\ 0 &\leq P_c(t) \leq P_{cmax} \ , P_{dmax} \leq P_d(t) \leq 0\\ & \left|SOC(T) - SOC(1)\right| \leq \epsilon \end{split}$$

• Grid:

 $0 \leq W_g(t) \leq W_{gmax}$

Exchange:

 $W_{exch} \ge 0$

$$W_{pv}$$

$$W_{pv}$$

$$W_{c}, W_{d}$$

$$W_{g}$$

$$W_{exch}$$

- **Decision variables**: x=[W_g W_c W_d SOC W_{exch}]
- Input:

.

LUSAC

 W_{pv}, W_{wt}, W_{l}

• Objective:

Minimize the cost of energy purchased from the grid in the deficit case.

• Assumptions:

- The K(t) refers to the charging state of the battery.
- The purchased energy price is considered constant.

LUSAC

OPTIMIZATION ALGORITHM Β.

- Linear Programming Model 1.
 - **Objective function:** $\min C = \sum_{i=1}^{n} W_g(t) C_g k(i)$
 - **Penalty function:** ٠

$$\mathbf{k}(\mathbf{t}) = \begin{cases} \mathbf{1}, & \text{if } \mathbf{d}(\mathbf{t}) \ge \mathbf{0} \\ \mathbf{0}, & \text{Otherwise} \end{cases}$$

$$\mathbf{d}(\mathbf{t}) = \mathbf{W}_{l}(\mathbf{t}) - \mathbf{W}_{pv}(\mathbf{t}) - \mathbf{W}_{wt}(\mathbf{t})$$

- **Constraints:**
- **Energy balance:**

 $d(t) = k(t)(W_{g}(t) - W_{d}(t)) + (k(t) - 1)(W_{c}(t) - W_{exch}(t))$

Battery:

$$\begin{aligned} SOC(t+1) &= SOC(t) + \frac{\left(1 - k(t)\right)W_c(t) + k(t)W_d(t)}{E_c} \\ SOC_{min} &\leq SOC(t) \leq SOC_{max} \\ 0 &\leq P_c(t) \leq P_{cmax} \quad , P_{dmax} \leq P_d(t) \leq 0 \\ & \left|SOC(T) - SOC(1)\right| \leq \epsilon \end{aligned}$$

Grid:

 $0 \leq W_g(t) \leq W_{gmax}$

Exchange:

 $W_{exch} \ge 0$

6

Input: • •

Assumptions: •

- The K(t) refers to the charging state of the 0 battery.
- The purchased energy price is considered Ο constant.

 W_{pv}, W_{wt}, W_{l}

Objective:

Minimize the cost of energy purchased from the grid in the deficit case.

Conclusion

OPTIMIZATION ALGORITHM B.

- 2. Particle Swarm Optimization Model
 - **Objective function:** $\min C = P + \sum W_g(t)C_g$
 - **Penalty function:**

$$W_g(\mathbf{t}) = \begin{cases} W_l(\mathbf{t}) - d(\mathbf{t}) + W_b(\mathbf{t}), & \text{if } d(\mathbf{t}) \ge \mathbf{0} \\ \mathbf{0}, & \text{Otherwise} \end{cases}$$

$$W_{exch}(t) = \begin{cases} -d(t) - W_b(t), & \text{if } d(t) \le 0\\ 0, & \text{Otherwise} \end{cases}$$

$$\mathbf{d}(\mathbf{t}) = \mathbf{W}_{\mathbf{l}}(\mathbf{t}) - \mathbf{W}_{\mathbf{pv}}(\mathbf{t}) - \mathbf{W}_{\mathbf{wt}}(\mathbf{t})$$

Constraints:

Battery:

$$\begin{aligned} \text{SOC}(t+1) &= \text{SOC}(t) + \frac{\left(1 - k(t)\right)W_c(t) + k(t)W_d(t)}{E_c}\\ \text{SOC}_{min} &\leq \text{SOC}(t) \leq \text{SOC}_{max} \end{aligned}$$

$$0 \leq P_c(t) \leq P_{cmax}~$$
 , $P_{dmax} \leq P_d(t) \leq 0$

$$|SOC(T) - SOC(1)| \leq \epsilon$$

Grid:

$$0 \leq W_g(t) \leq W_{gmax}$$

- Exchange:
- $W_{exch} \ge 0$

 W_l Load W_{pv} W_b Wwt Wg W_{exch}

- **Decision variables:** $X = [W_h]$
- Input: •

•

LUSAC

 W_{pv}, W_{wt}, W_{l}

Objective:

Minimize the cost of energy purchased from 0 the Grid in the deficit case.

Hypothesis: ٠

- Penalty is applied to avoid the following 0 scenarios:
 - 1. Charging and discharging the battery in the steady state
 - Discharging the battery if there is an excess 2. of energy
 - Energy left is not sufficent to charge the 3. battery

5kW

74kWh

Load

LUSAC

69kW

16kW

0,2€/kWh

Wexch

 \bigcirc

Methodology

Results

A. COMPARATIVE STUDY

Conclusion

- LP suggests the best schedule of the considered system compared to the PSO algorithm.
- PSO becomes avoidable when the numbers of decision variables increase.

Case 1: 1st of July in Lannion

• Operating cost (C) and exchanged energy (W_{exch}) proposed by the both approaches:

Scénario	PSO		LP	
	C (€)	W _{exch} (kWh)	C (€)	$W_{exch}(\mathbf{kWh})$
Cas 1: (July)	1,85	32	0,68	24
Cas 2: (May)	2,61	27	1,18	18
Cas 3: (October)	2,38	18,5	1,2	10

• Comparaison between the characteristics of the two algorithms:

	LP	PSO
Computational time	< 1 min	> 1h
Robustness	Confirmed	Confirmed

5kW

15

10

2

6 8 10 12

Energy [kWh]

74kWh

Load

Conclusion

18 20 22 24

A. COMPARATIVE STUDY

The energy scheduling on the 1st of July in Lannion

Load

Battery

Exchange

Wind Turbine

PV

Grid

18 20 22 24

16

Time [h]

100

Case 1: 1st of July in Lannion

Battery state of charge

Energy scheduling proposed by PSO

Energy scheduling proposed by LP

Conclusion

 \bigcirc

LUSAC

69kW

16kW

0,2€/kWh

- The energy dispatch proposed by the both approaches is globally similar.
- The difference occurs in the variation of the battery state of charge.

Wexch

69kW

16kW

0,2€/kWh

Load

5kW

74kWh

Methodology

Results

Conclusion

A. COMPARATIVE STUDY

The energy scheduling on the 1st of May in Lannion

Case 2: 1st of May in Lannion

Battery state of charge

Energy scheduling proposed by LP

Conclusion

 \bigcirc

• The energy dispatch proposed by the both approaches is globally similar.

Wexch

• The difference occurs in the variation of the battery state of charge.

Energy scheduling proposed by PSO

5kW

74kWh

Load

Methodology

Results

Conclusion

A. COMPARATIVE STUDY

The energy scheduling on the 1st of October in Lannion

22 24

Load

Battery

Exchange

Wind Turbine

ΡV

- Grid

18 20

Case 3: 1st of October in Lannion

15 PV 40 Wind Turbine

E 10 Wind Turbine S 5

10 12 14 16

15

10

2

4

6 8 10 12 14 16 18 20 22 24

Energy [kWh]

Time [h]

Energy scheduling proposed by PSO

Time [h]

Battery state of charge

Energy scheduling proposed by LP

Conclusion

 \bigcirc

LUSAC

69kW

16kW

0,2€/kWh

Wexch

- The energy dispatch proposed by the both approaches is globally similar.
- The difference occurs in the variation of the battery state of charge.

Methodology

B. SENSETIVITY ANALYSIS

The energy scheduling on 1st of October in Lannion

• Operating cost (C) and exchanged energy (W_{exch}) for different values of the initial battery state of charge using LP.

SOC(t0)	100%	90%	80%	70%	60%	50%	40%
C (€)	2,16	1,64	0,68	0	0,46	1,42	2,39
Wexch(kWh)	39	31	24	19	22	30	37

Energy scheduling of the system studied on the 1st of July in Lannion

Conclusion

՟ՠֈՠ

• The economic scenario to adopt is: SOC(t0)=70%

٠

՟ՠֈՠ

Methodology

Linear Programming	Particle Swarm Optimization		
 Positive aspect: Effectiveness (operating cost). Rapidity (Computational time). Robust Negative aspect: Problem formulation 	 Positive aspect: Effectiveness (operating cost). Robust Negative aspect Rapidity(Computational time). Convergence requires some parameters to be tuned (i.e., Population size). 		

- The comparative study confirms the effectiveness and rapidity of the LP in front of the PSO in terms of computational time and operational cost.
- The sensitivity analysis shows the impact of the initial battery state of charge on the energy scheduling.

՟ՠ֎

Thank you for your attention !

LUSAC

 \bigcirc

Annex1: Simulation data

Component	Values
Load demand	Constant rated power: 5kW
Photovoltaic	Installed peak power: 69kW
Wind Turbine	Rated power: 16 kW
Battery	Rated energy: 74 kWh
Grid	Purchased electricity price: 0,2€/kWh

Battery PARAMETERS:

SOCmin=30%, SOCmax=100%, SOC(1)=80%, ε =3% **PSO PARAMETERS:** Numbers of variables: 24 Numbers of iterations: 300

Population size: 1000

15

\bigcirc ~ | | |

OPTIMIZATION ALGORITHM

LP

PSO

Example

՟ՠֈՠ

Methodology

 W_{pv}

W_{wt}

Wg

Load

W_b

 W_{exch}

Telecoms

equipement

A. SYSTEM DESCRIPTION

Hypothesis:

՟ՠֈՠ

- Load demand is constant.
- No sale of energy to the Grid.
- Charging battery should be only by the remaining energy.
- W_{exch} refers to the energy lost.

Photovoltaic model:

(Lan and al.,2015)

Wind Turbine model:

(Diaf and al.,2007)

Battery model:

- Charging mode:
- Discharging mode:

$$\begin{split} Ppv(t) &= P_p f_c G(t) \left(\frac{1 + \beta (T_c(t) - T_{ref})}{G_r} \right) \\ T_c(t) &= T_a(t) + G(t) \left(\frac{NOCT - 20}{800} \right) \\ P_{wt}(t) &= \begin{cases} 0, 5C_p S \phi V(t)^3 & \text{if } V_i \leq V(t) \leq V_n \\ P_r & \text{if } V_n \leq V(t) \leq V_o \\ 0, & \text{Otherwise} \end{cases} \\ V(t) = V_0(t) \left(\frac{H}{H_0} \right)^{\alpha} \end{split}$$

$$\begin{split} W_{b}(t) &= W_{b}(t-1) + \left(W_{pv}(t) + W_{wt}(t) - W_{l}(t) \right) \\ W_{b}(t) &= W_{b}(t-1) - \left(W_{pv}(t) + W_{wt}(t) - W_{l}(t) \right) \end{split}$$

(Hossain and al.,2019)