

Josh Eichman^{a,b}, Mariana Jiménez Martínez^a, Cristina Corchero^{c,a}

a: Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Spain

b: National Renewable Energy Laboratory, Golden, Colorado, USA

c: Universitat Politecnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain

INDUSTRY

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801342 (Tecniospring INDUSTRY) and from the Agència per a la Competitivitat de l'Empresa de la Generalitat de Catalunya

Motivation

- European energy goals seek to reduce consumption, increase efficiency and increase renewable shares.
- Energy communities can help to address the European goals
- Clean Energy for All Europeans Package (CEP) creates a framework for energy communities, amongst other things
- Expansion of Spanish framework for energy communities and incentives
 - RD 477/2021: €1.12 billion for self-consumption and storage
- Limited literature comparing community coordination strategies including Collective Self-Consumption (CSC) in Spain
- Current literature does not include recent updates to CSC rules in Spain

 Hourly variable distribution coefficient

Authors

Energy Systems Analytics is a research group whose areas of expertise are Statistical Analysis & Data Visualization, Modelling & Optimization, and Sustainability & Economic Assessment. Group scientific activity focuses on Energy System Integration and Innovative Energy Uses. Our technological research fields are:

Methodology: Scenario development

- 1. Load Only
- 2. Load + Photovoltaic panels (PV) (no export)
- 3. Load + PV (with export)
- 4. Load + PV + Batt. (no export)
- 5. Load + PV + Batt. (with export)

Scenarios include:

- Collective selfconsumption (with and w/o)
- Export (with and w/o)
- 5 retail rates (see backup for details)
- 2 equipment distributions (see backup for details)
- 2 sizes (see backup for details)

Device assumptions

Parameter	Value
PV capital cost	\$1387/kW [1]
PV fixed operation & maintenance cost	\$10/kW-year [1]
Storage capital cost	\$955/kWh [1]
Storage energy capacity	4 hours at rated discharge power
Storage efficiency	85% AC to AC
Storage self- discharge	1% of stored energy per day [2]

ltem	Device configurations	Collective self- consumption	Renewable sales	Retail Rates	Equipment distribution	Size
1	Load only	Yes, No	Yes, No	5	Distributed, centralized	Large, Small
2	Load + PV	Yes, No	Yes, No	5	Distributed, centralized	Large, Small
3	Load + PV + Battery	Yes, No	Yes, No	5	Distributed, centralized	Large, Small

Financial assumptions

Parameter	Value	1
Euro to dollar	0.89	2
Study period	20 years	
Tax rate	25%	3
Equity	41.9%	
Interest rate on debt	3.125% [3]	4
Inflation	1.6%	
WACC	7%	
Depreciation schedule	10% for up to 20 years [4]	

- . IRENA, "Renewable Power Generation Costs in 2020," International Renewable Energy Agency, Abu Dhabi, 2021.
- E. Redondo-Iglesias, P. Venet, and S. Pelissier, "Measuring Reversible and Irreversible Capacity Losses on Lithium-Ion Batteries," in 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, Oct. 2016, pp. 1–5. doi: 10.1109/VPPC.2016.7791723.
- 3. Banco de España, "Table of banks' lending and borrowing rates." https://clientebancario.bde.es/pcb/en/menuhorizontal/productosservici/relacionados/tiposinteres/guiatextual/tiposinteresprac/Tabla_de_tipos__a0b053c69a40f51.html.
- infoautónomos, "¿Qué son las amortizaciones? ¿Cómo funcionan? Ejemplo." https://www.infoautonomos.com/contabilidad/tablas-deamortizacion-para-los-bienes-de-una-empresa/.

Scenario combinations

Community description

- The community is comprised of 8 members (see table for more information)
- Location is based on weather data, workday calendar, and PV generation from Barcelona, Spain.
- Data is developed using the LoadProfileGenerator[†]

† Noah Pflugradt, *LoadProfileGenerator*. 2022. [Online]. https://www.loadprofilegenerator.de/

#	Identifier (CHR)	Description	Max. Power (kW)	Min. Power (kW)	Avg. Power (kW)	StDev of Power (kW)
1	01	Couple both at work	6.59	0.103	0.617	0.792
2	05	Family with 3 children, both parents work	3.76	0.045	0.594	0.589
3	07	Working single person	3.94	0.046	0.205	0.370
4	15	Multigenerational family with 2 working adults, 2 children and 2 seniors	7.82	0.100	1.382	1.233
5	16	Couple over 65 years old	5.49	0.017	0.584	0.795
6	22	Single working woman with 1 child	2.10	0.055	0.213	0.285
7	40	Non-working couple (30-64 years old)	3.00	0.062	0.406	0.439
8	52	Student sharing an apartment	4.08	0.052	0.426	0.489

Outputs

RODeC ΤΜ

Revenue, Operation, and Device **Optimization**

Applications

- Multi-market optimization
- Hydrogen business case assessment
- Wholesale market revenue comparison
- Retail rate optimization
- Solar PV + Storage
- **Real-time optimization** control of electrolyzer
- Vehicle fleet optimization

Results

- Collective selfconsumption (CSC) with export is the least cost
- Generally, collective self-consumption (no export) is better than self-consumption (SC) with export.
- Large systems were preferred
- Distributed systems have lower operating cost than concentrated systems

Devices	PV	PV+Batt	PV	PV+Batt	PV	PV+Batt	PV	PV+Batt	
Location	Dist.	Dist.	Concen.	Concen.	Dist.	Dist.	Concen.	Concen.	Load Only
Size	Large	Large	Large	Large	Small	Small	Small	Small	
CSC (with export) CSC (no export)					■ SC (with	export)	SC (no expo	ort)	

CSC: Collective self-consumption SC: Individual self-consumption

Dist.: Distributed Cocen.: Concentrated

Results

- Allowing export is the most effective way to reduce curtailment
- For collective selfconsumption without export there can be a tradeoff between net present value and curtailment

Collective self-co	Yes	Yes	No	No	
Sale of rene	Yes	No	Yes	No	
Net present	PV	-116	-123	-129	-142
value (thousand €)	PV + Battery	-121	-122	-130	-144
Curtailment	PV	0.0	5.7	0.0	11.1
(MWh)	PV + Battery	0.0	1.3	0.0	6.4

PV = photovoltaic panels

Next steps

- Demonstrate the ability to control real CSC systems
- Expand the load scenarios to characterize more types of communities.
- Explore the impact of optimization under uncertainty (PV forecasting, energy limited storage, etc.)

Thank you for your attention

Acknowledgements:

Josh Eichman (jeichman@irec.cat)

Tecniospring

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801342 (Tecniospring INDUSTRY) and from the Agència per a la Competitivitat de l'Empresa de la Generalitat de Catalunya

Device and Financial assumptions

Device assumptions

Parameter	Value	
PV capital cost	\$1387/kW [1]	
PV fixed operation & maintenance cost	\$10/kW-year [1]	
Storage capital cost	\$955/kWh [1]	
Storage energy capacity	4 hours at rated discharge power	
Storage efficiency	85% AC to AC	Ir
Storage self-discharge	1% of stored energy per day [2]	
Retail electricity rates	Sale price based on wholesale market price [3] Endesa (One Luz and One Luz 3 period) [4,5]	
	Hola Luz (Classic and Fair rate) [6]	De
	Pepe Energy (ECO) [7]	

Financial assumptions

Parameter	Value
Euro to dollar	0.89
Study period	20 years
Tax rate	25%
Equity	41.9%
Interest rate on debt	3.125% [8]
Inflation	1.6%
WACC	7%
Depreciation schedule	10% for up to 20 years [9]

- 1. IRENA, "Renewable Power Generation Costs in 2020," International Renewable Energy Agency, Abu Dhabi, 2021.
- 2. E. Redondo-Iglesias, P. Venet, and S. Pelissier, "Measuring Reversible and Irreversible Capacity Losses on Lithium-Ion Batteries," in 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, Oct. 2016, pp. 1–5. doi: 10.1109/VPPC.2016.7791723.
- RED Eléctrica de España, "Sistema de información del operador del sistema (esios)," Self-consumption surplus energy price for the simplified compensation mechanism (PVPC). https://www.esios.ree.es/en/analysis/1739?vis=1&start_date=18-03-2022T00%3A00&end_date=18-03-2022T23%3A00&compare_start_date=17-03-2022T00%3A00&groupby=hour&compare_indicators=1013,1014,1015.
- 4. Endesa, "One Luz Tariff: tariff with a fixed price per kWh." https://www.endesa.com/en/catalog/light/one/one-luz
- 5. Endesa, "One Luz 3 Periodos Tariff." https://www.endesa.com/en/catalog/light/one/tarifa-one-luz-3periodos-en.
- 6. holaluz, "Electricity tariffs 100% green for your home." https://www.holaluz.com/en/electricity-rates/#tarifaJusta.
- 7. PepeEnergy, "La Tarifa ECO de Luz." https://www.pepeenergy.com/tarifas-luz (accessed Mar. 01, 2022).
- 8. Banco de España, "Table of banks' lending and borrowing rates." https://clientebancario.bde.es/pcb/en/menu-horizontal/productosservici/relacionados/tiposinteres/guia-textual/tiposinteresprac/Tabla_de_tipos__a0b053c69a40f51.html.
- 9. infoautónomos, "¿Qué son las amortizaciones? ¿Cómo funcionan? Ejemplo." https://www.infoautonomos.com/contabilidad/tablas-de-amortizacion-para-los-bienes-de-una-empresa/.

Sizing and location breakdown

- PV size for small systems is based on 75% of average load at site
- PV size for large systems is based on 50% of max. load at site
- Storage size for small systems is based on 20% of average load
- Storage size for large systems is based on 20% of max load at site

Consumer Location Size 2 3 8 5 6 4 **Distributed** Small 0.5 0.4 0.2 1.0 0.4 0.2 0.3 0.3 1.6 1.7 **Concentrated** Small **Distributed** Large 3.3 1.9 2.0 3.9 2.7 1.1 1.5 2.0 **Concentrated** Large 9.0 9.4

PV sizing and location

	Size		Consumer						
Location	Size	1 2	2	3	4	5	6	7	8
Distributed	Small	0.12	0.1	0.0	0.28	0.12	0.04	0.08	0.09
Concentrated	Small		0.4	0.5					
Distributed	Large	1.3	0.8	0.8	1.6	1.1	0.4	0.6	0.8
Concentrated	Large		3.6	3.8					

Storage sizing and location

