
The Pyrrho

Experiment
MALCOLM CROWE AND FRITZ LAUX

DBKDA 2022

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe
University of the West of Scotland

Email: malcolm.crowe@uws.ac.uk

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at

Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in

Mathematics.

 His current research interests include

• Information modeling and data integration

• Transaction management and optimistic concurrency control

• Business intelligence and knowledge discovery

 He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the

DBKDA advisory board.

 Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of

European universities and IT-companies to set up a transnational collaboration scheme for

Database teaching. Together with colleagues from 5 European countries he has conducted

projects supported by the European Union on state-of-the-art database teaching.

 He is a member of the ACM and the German Computer Society (Gesellschaft für Informatik).

Prof. Dr. Fritz Laux
(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

3

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

This presentation

 The result of the Pyrrho v7 experiment

To reimplement Pyrrho to use

Shareable data structures throughout

Without sacrificing any features

Background

Ground Rules

Progress since DBKDA 2021 Tutorial

Highlights and insights

Future steps

 Next: Background
4

5

Background
DKBDA 2018 TO NOW

 Next: DBKDA 2018

DBKDA 2018-now
A sequence of contributions

 Transaction focus, optimistic execution

 Looking at Big Live Data

Always prioritising correctness over speed

We demonstrated StrongDBMS
at DBKDA 2019 with code examples

A tiny optimistic DBMS, serialized log file

Outperformed all other relational DBMS

 In a test featuring high concurrency

 To show that optimistic can be best

 Next: “Serializable” Tx
6

“Serializable” Transactions

 The goal of any DBMS should be to

serialise transactions

the computer scientist wants that

 It can be done, but it takes time

and brings limitations (2 army problem)

But most DBMS customers want speed

and say correctness is less important

So trade-offs are inevitable

 Next: Productivity vs ..
7

Productivity vs Safety
 Commercial DBMS (Oracle, SQL Server etc)

 recommend avoiding serializable requirement

 In 2019 we showed that requiring serialisability

made many transactions fail in a TPCC demo

 throughput fell off at about 30 clerks

 In the same demo we had StrongDBMS prototype

 Guaranteed transactions serialised

 Outperformed other DBMS in productivity

 throughput continued to increase beyond 100 clerks

 But was a very simple DBMS

 lacking many features DB people expect

 With a radical approach to data structures

 Shareable Data Structures
8

Shareable Data Structures

StrongDB’s magic ingredient was

SHAREABLE data structures throughout

Our favourite optimistic DBMS Pyrrho

Did not perform well in the test

 It was natural to re-engineer Pyrrho

To use shareable data structures

So that it would be equally good

 In high concurrency situations

 Next: Benefit of Shareable
9

What we gain from Shareable

 Build in the notion of transaction isolation

at all levels of implementation

 Structures are shared but never copied

 Immutable, all fields readonly or final

 A changed object has a new root node

 Shares all the old ones with previous version

 Brings great advantages for transactions

 Isolation, instant snapshot, just forget on rollback

But is more complex to program

 Next: When we add a node
10

When we add a node

T. Krijnen, and G. L. T. Meertens, “Making B-Trees work for B”. Amsterdam :

Stichting Mathematisch Centrum, 1982, Technical Report IW 219/83

11

Transaction and B-Tree

 Next: Strong vs. Pyrrho
12

M. K. Crowe, S Matalonga: StrongDBMS: Built from Immutable Components

StrongDBMS vs PyrrhoDBMS

StrongDBMS had simple tables

No triggers, alter/drop, procedures ..

SQL parsing done on the client

 (Just enough capability for TPCC)

Both DBMS have persistent tx log

Serialized is stronger than serializable

and optimistic transaction execution

 Next: Pyrrho fared poorly
13

Pyrrho DBMS fared poorly

 It is optimistic and has serialized tx log

 But also obsessive, too many features

 Triggers, Cascades, User Defined Types

Object oriented database objects

 Etc etc

We found that this ambition is too much

 Safe but not good for high concurrency

Outperformed by all other RDBMS

 But – it has RESTViews, big live data…

 Next: Big Live data..
14

Big Data and Big Live Data

 The problems with Big Data

Data is dead, always out of date

Correct only at the time it was extracted

Taken out of context, not evolving

With Big Live Data, data is accessible

From the source where it lives, evolves

View-mediated data warehousing

Using REST for integration

PyrrhoDB does this really well

 Next: The ground rules
15

16

The ground rules

 Next: Everything shareable

Everything must be shareable

All fields are readonly and shareable

Can only be given values in constructor

Might lead to very long argument lists

Unless we use idea of a property tree

Have += operator to add a property value

Pyrrho v7 does this

Subclasses provide such tree to the base()

Relocation cascades changes to fields

Cascades for replacement of an object

 Next: Mechanisms
17

Tree structures

BTree<K,V> is immutable, shareable

When K and V are shareable

Two-way traversal uses immutable
bookmarks

Database, Transaction all shareable

Contents (tables etc) must be shareable
too

 Transaction is a private copy

 Increments are prepared and committed

Database is built from the tx log
 Next: Shareable DB objects

18

Shareable database objects
 From SQL syntax

 Table, Domain, Column, View, Role etc

 SQL expressions, literals, functions etc

 SQL statements for DML and stored modules

 TypedValue classes with domain

 TInt, TChar, TBlob, TRow, TArray etc

 RowSets for collecting results

RowSets form a pipeline from base tables

 Some are updateable

Cursors are a kind of bookmark of TRow

 Next: The first steps
19

The first steps in the experiment

 In 2019 it was safe but not productive

As many other DBMS were (e.g. PostGRES)

Both became unproductive above 6 clerks

 Would shareable data structures help?

 In 2021 a V7 demo with good productivity

Productivity increasing up to 50 clerks

 But lacked many advanced DBMS features

And did not have quite the right structures

 The V7alpha experiment continued

 Next: Objectives of the experiment
20

https://youtu.be/0YaU59LvgLs

Objectives of the experiment

Pyrrho with shareable data structures

Can it be done for all features?

Even RESTView? Optimistic execution?

Would it fix the transaction performance?

What programming lessons can be

learned?

Would it become unusably slow?

(StrongDBMS was fast and had shareable d.s.)

 Next: Since DBKDA 2021
21

22

Since DBKDA 2021

 Next: Progress ..

Progress since DBKDA 2021

 What happens to PyrrhoDBMS

 .. if we require shareable data structures?

 The extra complexity slows performance

 to unproductive levels

 TPCC has realistic requirements

1 clerk can only enter 16 orders in 10 mins

 In 2021 Pyrrho still could almost do this

 But with 2022 version of Pyrrho only 10

 This may improve with further development

 Next: TPCC new order
23

A New Order in progress

 Next: Parsing and Queries
24

Parsing and query analysis

Analyse SQL from left to right

Add known properties as we find them

Create RowSets as soon as possible

Adjust properties later via cascades

SQL is complex

Pyrrho has become safer but slower

Still unwilling to sacrifice correctness

 Next: Rowsets replace Queries
25

RowSets replace Queries

RowSets are immutable (of course)

They naturally form a tree by source

 The SQL standard: derived tables

 Instead of “optimising queries”

Think of the properties of RowSets

E.g. apply a where-condition, grouping

Change propagates to sources

RowSet keeps track of suitable indexes

And many RowSets are updatable

 Next: Update a join
26

Example: update a join

Many views and joins can be updated

e.g. if some of the columns are keys

 in one or more of the joined base tables

An update to the join then becomes

an update to one or more of the these tables

as table instances

 If the table is remote, we can use POST

 Next: SQL code parsed once
27

SQL code parsed once only

On definition of a view or procedure

 Then has its own unique identifiers

Avoids conflict with similar names

Similarly, table and view references

 Instanced: new ids for their columns etc

Uids are 64-bit longs, unique in the DB

Each range of uids has size 2^60

 Next: Uids instead of names
28

Uids instead of identifier chains
 SQL identifiers get replaced by uids

Unique Identifiers are just long integers

Unique within the database/transaction

Refer to a shareable database object

Column, Expression, Table, RowSet, Procedure,

Committed objects uids are file location

Others are private to the transaction

Can be lexical position in source SQL

Or ids of precompiled objects (view, proc)

Or allocated on a heap

 Next: Virtual data warehousing
29

View-mediated REST access

A view into live data (no copying)

[CREATE VIEW sales_V
(customer, sales, accSalesShare)

AS SELECT customer, sales,
(SELECT SUM(sales) FROM custSale

WHERE sales >= u.sales) /
(SELECT SUM(sales) FROM custSale)

FROM custSale AS u]

Designed for filtering by item

To discourage retrieval of the entire table

 Next: SQL for ABC-Analysis
30

31 Next: SQL for ABC

Example: ABC-Analysis
 Originally, ABC-analysis is a clustering of customers with

regard to their contribution to the sales of a company

 A-customers contribute the most, B is medium, and C-
group customers are least

 The algorithm is defined by 2 threshold values (t1, t2) which
separate A from B and B from C group

 These values are usually t1=50% and t2=85%

ABC Customer Sales accumul.S. … %

t1 ->

t2 ->

32
 Next: No query rewriting

SQL for ABC-Analysis
 Let table custSale(customer, sales)

 Query sales_V and assign a group to each customer according to
its sales percentage ordered by descending sales values.

 [SELECT CASE
WHEN accSalesShare <= 0.5 THEN 'A'
WHEN accSalesShare > 0.5 AND accSalesShare <= 0.85 THEN 'B'

WHEN accSalesShare > 0.85 THEN 'C'
ELSE NULL
END as ABC,
customer, sales,

CAST(CAST(sales/(SELECT SUM(sales) FROM sales_V) * 100 as decimal(6,2))
as char(6)) || ' %' AS share
FROM sales_V
ORDER BY sales DESC]

 Result

No query rewriting
 Consider the <select list> concept in View

 If it contain aggregation functions

 AVG, MAX, MIN, SUM, EVERY, ANY, COUNT, STDEV.., COLLECT, FUSION,
INTERSECTION

 During rowset traversal rows get added in:

 The resulting rowset has one row per group

 Rows in the source are added in to the result rowset

 Using Registers containing various accumulators, sums, multisets, ..

 Now suppose the view is remote (use REST)

 Sending it to a list of remote contributors

 This used to require a lot of analysis and rewriting extra column
names for the remote query

 COUNT becomes SUM, AVG needs SUM and COUNT, STDEV
needs sums of squares, collections..

 We don’t need to do this any more

 Next: How REST works

What happens with REST

 REST operations use standard formats

 For rows we use JSON documents

An item for each column of the row

Why not add some extra columns for the

Registers in that row?

 There is a Register for each occurrence of

an aggregation function in the select list

We define how to represent a Register in

JSON

 Next: an example

A RESTView example

With several remote sources via POST

Grouped aggregations are interesting

select sum(e)+char_length(f),f from ww
group by f

We no longer rewrite it, but send as is:

35

How does this work?

Each database returns its answer

 The data from each has extra fields

 The Registers for aggregates by group

Unpacked and combined by Pyrrho

 Next: The extra fields
36

Extra Register fields
 The local and remote servers see the same value

expression

 So the registers are supplied in the left-to-right
ordering

 As a Json document with the following items:

 The string value accumulated by the function if any

 The value of MAX, MIN, FIRST, LAST, ARRAY

 A document containing numbered fields for a multiset
value

 The value of a typed SUM

 The value of COUNT

 The sum of squares (if required for standard deviation
etc)

 Next: Transactions and REST

Transactions and REST

Because of the two-army problem

At most one remote participant

A set of commit steps is agreed

 The local DB starts the commit

 If the remote DB reports success

 The local DB can complete the

commit

 Next: The Result of the Experiment
38

The result of the experiment

Pyrrho v7 uses shareability throughout

Safe in high concurrency situations

 It implements Big Live Data protocols

But it is slower

 It showcases optimistic execution

And in some ways is a model to follow

 Next: Future Steps
39

40

Future steps

 Next: for Pyrrho DBMS

Next steps for PyrrhoDBMS

From alpha to beta..

Versioned object Web applications API

Based on POCO (plain old C# objects)

US DoD “Orange book” security

Some support for Java

Finish Window functions

 Next: Working with other DBMS
41

Working with other DBMS

REST for server communication

Common format (JSON), protocol (HTTP1.1)

Possibly with ETags (RFC7232), Registers

As a non-privileged Internet client

With privileges allocated in the usual way

Need adaptation to SQL dialects

Agreement about transactions

Avoid two-army problem

 Next: References
42

Links
Crowe, M. K., Matalonga, S.: Shareable Data
Structures, on
https://github.com/MalcolmCrowe/ShareableDataS
tructures

 includes source code for StrongDBMS, PyrrhoV7alpha
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable
Transactions, Tutorial, DBKDA 2021

 https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s

 https://www.iaria.org/conferences2021/filesDBKDA21/

 Version 6.3: https://pyrrhodb.uws.ac.uk

 50 clerks demo: https://youtu.be/0YaU59LvgLs

 Pyrrho blog: https://pyrrhodb.blogspot.com

 Next: References
43

https://github.com/MalcolmCrowe/ShareableDataStructures
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s
https://www.iaria.org/conferences2021/filesDBKDA21/
https://pyrrhodb.uws.ac.uk/
https://youtu.be/0YaU59LvgLs
https://pyrrhodb.blogspot.com/

References
Crowe, M. K., Laux, F.: Reconsidering Optimistic Algorithms for

Relational DBMS, DBKDA 2020

Crowe, M. K., Matalonga, S., Laiho, M: StrongDBMS, built from

immutable components, DBKDA 2019

Crowe, M. K., Fyffe, C: Benchmarking StrongDBMS, Keynote

speech, DBKDA 2019

Crowe, M. K., Laux, F.: DBMS Support for Big Live Data, DBKDA

2018

Crowe, M.K., Begg, C.E., Laux, F., Laiho, M: Data Validation for Big

Live Data, DBKDA 2017

Krijnen, T., Meertens, G. L. T.: “Making B-Trees work for B”.

Amsterdam : Stichting Mathematisch Centrum, 1982, Technical
Report IW 219/83

44

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2018/filesDBKDA18/MalcolmCrowe_DBMS_Support.pdf

