
The Pyrrho

Experiment
MALCOLM CROWE AND FRITZ LAUX

DBKDA 2022

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe
University of the West of Scotland

Email: malcolm.crowe@uws.ac.uk

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at

Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in

Mathematics.

 His current research interests include

• Information modeling and data integration

• Transaction management and optimistic concurrency control

• Business intelligence and knowledge discovery

 He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the

DBKDA advisory board.

 Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of

European universities and IT-companies to set up a transnational collaboration scheme for

Database teaching. Together with colleagues from 5 European countries he has conducted

projects supported by the European Union on state-of-the-art database teaching.

 He is a member of the ACM and the German Computer Society (Gesellschaft für Informatik).

Prof. Dr. Fritz Laux
(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

3

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

This presentation

 The result of the Pyrrho v7 experiment

To reimplement Pyrrho to use

Shareable data structures throughout

Without sacrificing any features

Background

Ground Rules

Progress since DBKDA 2021 Tutorial

Highlights and insights

Future steps

 Next: Background
4

5

Background
DKBDA 2018 TO NOW

 Next: DBKDA 2018

DBKDA 2018-now
A sequence of contributions

 Transaction focus, optimistic execution

 Looking at Big Live Data

Always prioritising correctness over speed

We demonstrated StrongDBMS
at DBKDA 2019 with code examples

A tiny optimistic DBMS, serialized log file

Outperformed all other relational DBMS

 In a test featuring high concurrency

 To show that optimistic can be best

 Next: “Serializable” Tx
6

“Serializable” Transactions

 The goal of any DBMS should be to

serialise transactions

the computer scientist wants that

 It can be done, but it takes time

and brings limitations (2 army problem)

But most DBMS customers want speed

and say correctness is less important 

So trade-offs are inevitable

 Next: Productivity vs ..
7

Productivity vs Safety
 Commercial DBMS (Oracle, SQL Server etc)

 recommend avoiding serializable requirement

 In 2019 we showed that requiring serialisability

made many transactions fail in a TPCC demo

 throughput fell off at about 30 clerks

 In the same demo we had StrongDBMS prototype

 Guaranteed transactions serialised

 Outperformed other DBMS in productivity

 throughput continued to increase beyond 100 clerks

 But was a very simple DBMS

 lacking many features DB people expect

 With a radical approach to data structures

 Shareable Data Structures
8

Shareable Data Structures

StrongDB’s magic ingredient was

SHAREABLE data structures throughout

Our favourite optimistic DBMS Pyrrho

Did not perform well in the test

 It was natural to re-engineer Pyrrho

To use shareable data structures

So that it would be equally good

 In high concurrency situations

 Next: Benefit of Shareable
9

What we gain from Shareable

 Build in the notion of transaction isolation

at all levels of implementation

 Structures are shared but never copied

 Immutable, all fields readonly or final

 A changed object has a new root node

 Shares all the old ones with previous version

 Brings great advantages for transactions

 Isolation, instant snapshot, just forget on rollback

But is more complex to program

 Next: When we add a node
10

When we add a node

T. Krijnen, and G. L. T. Meertens, “Making B-Trees work for B”. Amsterdam :

Stichting Mathematisch Centrum, 1982, Technical Report IW 219/83

11

Transaction and B-Tree

 Next: Strong vs. Pyrrho
12

M. K. Crowe, S Matalonga: StrongDBMS: Built from Immutable Components

StrongDBMS vs PyrrhoDBMS

StrongDBMS had simple tables

No triggers, alter/drop, procedures ..

SQL parsing done on the client

 (Just enough capability for TPCC)

Both DBMS have persistent tx log

Serialized is stronger than serializable

and optimistic transaction execution

 Next: Pyrrho fared poorly
13

Pyrrho DBMS fared poorly

 It is optimistic and has serialized tx log

 But also obsessive, too many features

 Triggers, Cascades, User Defined Types

Object oriented database objects

 Etc etc

We found that this ambition is too much

 Safe but not good for high concurrency

Outperformed by all other RDBMS

 But – it has RESTViews, big live data…

 Next: Big Live data..
14

Big Data and Big Live Data

 The problems with Big Data

Data is dead, always out of date

Correct only at the time it was extracted

Taken out of context, not evolving

With Big Live Data, data is accessible

From the source where it lives, evolves

View-mediated data warehousing

Using REST for integration

PyrrhoDB does this really well

 Next: The ground rules
15

16

The ground rules

 Next: Everything shareable

Everything must be shareable

All fields are readonly and shareable

Can only be given values in constructor

Might lead to very long argument lists

Unless we use idea of a property tree

Have += operator to add a property value

Pyrrho v7 does this

Subclasses provide such tree to the base()

Relocation cascades changes to fields

Cascades for replacement of an object

 Next: Mechanisms
17

Tree structures

BTree<K,V> is immutable, shareable

When K and V are shareable

Two-way traversal uses immutable
bookmarks

Database, Transaction all shareable

Contents (tables etc) must be shareable
too

 Transaction is a private copy

 Increments are prepared and committed

Database is built from the tx log
 Next: Shareable DB objects

18

Shareable database objects
 From SQL syntax

 Table, Domain, Column, View, Role etc

 SQL expressions, literals, functions etc

 SQL statements for DML and stored modules

 TypedValue classes with domain

 TInt, TChar, TBlob, TRow, TArray etc

 RowSets for collecting results

RowSets form a pipeline from base tables

 Some are updateable

Cursors are a kind of bookmark of TRow

 Next: The first steps
19

The first steps in the experiment

 In 2019 it was safe but not productive

As many other DBMS were (e.g. PostGRES)

Both became unproductive above 6 clerks

 Would shareable data structures help?

 In 2021 a V7 demo with good productivity

Productivity increasing up to 50 clerks

 But lacked many advanced DBMS features

And did not have quite the right structures

 The V7alpha experiment continued

 Next: Objectives of the experiment
20

https://youtu.be/0YaU59LvgLs

Objectives of the experiment

Pyrrho with shareable data structures

Can it be done for all features?

Even RESTView? Optimistic execution?

Would it fix the transaction performance?

What programming lessons can be

learned?

Would it become unusably slow?

(StrongDBMS was fast and had shareable d.s.)

 Next: Since DBKDA 2021
21

22

Since DBKDA 2021

 Next: Progress ..

Progress since DBKDA 2021

 What happens to PyrrhoDBMS

 .. if we require shareable data structures?

 The extra complexity slows performance

 to unproductive levels

 TPCC has realistic requirements

1 clerk can only enter 16 orders in 10 mins

 In 2021 Pyrrho still could almost do this

 But with 2022 version of Pyrrho only 10

 This may improve with further development

 Next: TPCC new order
23

A New Order in progress

 Next: Parsing and Queries
24

Parsing and query analysis

Analyse SQL from left to right

Add known properties as we find them

Create RowSets as soon as possible

Adjust properties later via cascades

SQL is complex

Pyrrho has become safer but slower

Still unwilling to sacrifice correctness

 Next: Rowsets replace Queries
25

RowSets replace Queries

RowSets are immutable (of course)

They naturally form a tree by source

 The SQL standard: derived tables

 Instead of “optimising queries”

Think of the properties of RowSets

E.g. apply a where-condition, grouping

Change propagates to sources

RowSet keeps track of suitable indexes

And many RowSets are updatable

 Next: Update a join
26

Example: update a join

Many views and joins can be updated

e.g. if some of the columns are keys

 in one or more of the joined base tables

An update to the join then becomes

an update to one or more of the these tables

as table instances

 If the table is remote, we can use POST

 Next: SQL code parsed once
27

SQL code parsed once only

On definition of a view or procedure

 Then has its own unique identifiers

Avoids conflict with similar names

Similarly, table and view references

 Instanced: new ids for their columns etc

Uids are 64-bit longs, unique in the DB

Each range of uids has size 2^60

 Next: Uids instead of names
28

Uids instead of identifier chains
 SQL identifiers get replaced by uids

Unique Identifiers are just long integers

Unique within the database/transaction

Refer to a shareable database object

Column, Expression, Table, RowSet, Procedure,

Committed objects uids are file location

Others are private to the transaction

Can be lexical position in source SQL

Or ids of precompiled objects (view, proc)

Or allocated on a heap

 Next: Virtual data warehousing
29

View-mediated REST access

A view into live data (no copying)

[CREATE VIEW sales_V
(customer, sales, accSalesShare)

AS SELECT customer, sales,
(SELECT SUM(sales) FROM custSale

WHERE sales >= u.sales) /
(SELECT SUM(sales) FROM custSale)

FROM custSale AS u]

Designed for filtering by item

To discourage retrieval of the entire table

 Next: SQL for ABC-Analysis
30

31  Next: SQL for ABC

Example: ABC-Analysis
 Originally, ABC-analysis is a clustering of customers with

regard to their contribution to the sales of a company

 A-customers contribute the most, B is medium, and C-
group customers are least

 The algorithm is defined by 2 threshold values (t1, t2) which
separate A from B and B from C group

 These values are usually t1=50% and t2=85%

ABC Customer Sales accumul.S. … %

t1 ->

t2 ->

32
 Next: No query rewriting

SQL for ABC-Analysis
 Let table custSale(customer, sales)

 Query sales_V and assign a group to each customer according to
its sales percentage ordered by descending sales values.

 [SELECT CASE
WHEN accSalesShare <= 0.5 THEN 'A'
WHEN accSalesShare > 0.5 AND accSalesShare <= 0.85 THEN 'B'

WHEN accSalesShare > 0.85 THEN 'C'
ELSE NULL
END as ABC,
customer, sales,

CAST(CAST(sales/(SELECT SUM(sales) FROM sales_V) * 100 as decimal(6,2))
as char(6)) || ' %' AS share
FROM sales_V
ORDER BY sales DESC]

 Result

No query rewriting
 Consider the <select list> concept in View

 If it contain aggregation functions

 AVG, MAX, MIN, SUM, EVERY, ANY, COUNT, STDEV.., COLLECT, FUSION,
INTERSECTION

 During rowset traversal rows get added in:

 The resulting rowset has one row per group

 Rows in the source are added in to the result rowset

 Using Registers containing various accumulators, sums, multisets, ..

 Now suppose the view is remote (use REST)

 Sending it to a list of remote contributors

 This used to require a lot of analysis and rewriting extra column
names for the remote query

 COUNT becomes SUM, AVG needs SUM and COUNT, STDEV
needs sums of squares, collections..

 We don’t need to do this any more

 Next: How REST works

What happens with REST

 REST operations use standard formats

 For rows we use JSON documents

An item for each column of the row

Why not add some extra columns for the

Registers in that row?

 There is a Register for each occurrence of

an aggregation function in the select list

We define how to represent a Register in

JSON

 Next: an example

A RESTView example

With several remote sources via POST

Grouped aggregations are interesting

select sum(e)+char_length(f),f from ww
group by f

We no longer rewrite it, but send as is:

35

How does this work?

Each database returns its answer

 The data from each has extra fields

 The Registers for aggregates by group

Unpacked and combined by Pyrrho

 Next: The extra fields
36

Extra Register fields
 The local and remote servers see the same value

expression

 So the registers are supplied in the left-to-right
ordering

 As a Json document with the following items:

 The string value accumulated by the function if any

 The value of MAX, MIN, FIRST, LAST, ARRAY

 A document containing numbered fields for a multiset
value

 The value of a typed SUM

 The value of COUNT

 The sum of squares (if required for standard deviation
etc)

 Next: Transactions and REST

Transactions and REST

Because of the two-army problem

At most one remote participant

A set of commit steps is agreed

 The local DB starts the commit

 If the remote DB reports success

 The local DB can complete the

commit

 Next: The Result of the Experiment
38

The result of the experiment

Pyrrho v7 uses shareability throughout

Safe in high concurrency situations

 It implements Big Live Data protocols

But it is slower

 It showcases optimistic execution

And in some ways is a model to follow

 Next: Future Steps
39

40

Future steps

 Next: for Pyrrho DBMS

Next steps for PyrrhoDBMS

From alpha to beta..

Versioned object Web applications API

Based on POCO (plain old C# objects)

US DoD “Orange book” security

Some support for Java

Finish Window functions

 Next: Working with other DBMS
41

Working with other DBMS

REST for server communication

Common format (JSON), protocol (HTTP1.1)

Possibly with ETags (RFC7232), Registers

As a non-privileged Internet client

With privileges allocated in the usual way

Need adaptation to SQL dialects

Agreement about transactions

Avoid two-army problem

 Next: References
42

Links
Crowe, M. K., Matalonga, S.: Shareable Data
Structures, on
https://github.com/MalcolmCrowe/ShareableDataS
tructures

 includes source code for StrongDBMS, PyrrhoV7alpha
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable
Transactions, Tutorial, DBKDA 2021

 https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s

 https://www.iaria.org/conferences2021/filesDBKDA21/

 Version 6.3: https://pyrrhodb.uws.ac.uk

 50 clerks demo: https://youtu.be/0YaU59LvgLs

 Pyrrho blog: https://pyrrhodb.blogspot.com

 Next: References
43

https://github.com/MalcolmCrowe/ShareableDataStructures
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s
https://www.iaria.org/conferences2021/filesDBKDA21/
https://pyrrhodb.uws.ac.uk/
https://youtu.be/0YaU59LvgLs
https://pyrrhodb.blogspot.com/

References
Crowe, M. K., Laux, F.: Reconsidering Optimistic Algorithms for

Relational DBMS, DBKDA 2020

Crowe, M. K., Matalonga, S., Laiho, M: StrongDBMS, built from

immutable components, DBKDA 2019

Crowe, M. K., Fyffe, C: Benchmarking StrongDBMS, Keynote

speech, DBKDA 2019

Crowe, M. K., Laux, F.: DBMS Support for Big Live Data, DBKDA

2018

Crowe, M.K., Begg, C.E., Laux, F., Laiho, M: Data Validation for Big

Live Data, DBKDA 2017

Krijnen, T., Meertens, G. L. T.: “Making B-Trees work for B”.

Amsterdam : Stichting Mathematisch Centrum, 1982, Technical
Report IW 219/83

44

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2018/filesDBKDA18/MalcolmCrowe_DBMS_Support.pdf

