The Pyrrho
Experiment

MALCOLM CROWE AND FRITZ LAUX
DBKDA 2022

Malcolm Crowe

University of the West of Scotland
Email: malcolm.crowe@uws.ac.uk

» Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

» He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

» He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

» Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

» Prof. Crowe has recently been appointed an IARIA Fellow.

Prof. Dr. Fritz Laux

(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

>

Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at
Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in
Mathematics.

His current research interests include

. Information modeling and data integration

. Transaction management and optimistic concurrency control

. Business intelligence and knowledge discovery

He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the
DBKDA advisory board.

Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of
European universities and IT-companies to set up a transnational collaboration scheme for
Database teaching. Together with colleagues from 5 European countries he has conducted
projects supported by the European Union on state-of-the-art database teaching.

He is a member of the ACM and the German Computer Society (Gesellschaft fiir Informatik).

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

This presentation

» The result of the Pyrrho v/ experiment

» To remplement Pyrrho to use
» Shareable data structures throughout
» Without sacrificing any features

» Background

» Ground Rules

» Progress since DBKDA 2021 Tutorial
» Highlights and insights

» Future steps

» Next: Background

Background

DKBDA 2018 TO NOW

/ '\

» Next: DBKDA 2018

DBKDA 2018-now

» A sequence of contributions

» Transaction focus, optimistic execution

» Looking at Big Live Data

» Always prioritising correctness over speed
» We demonstrated StrongDBMS

» at DBKDA 2019 with code examples

» A Tiny optimistic DBMS, log file

» Outperformed all other relational DBMS

» In a test featuring high concurrency

» To show that optimistic can be best

» Next: “Serializable™ Tx

“Serializable” Transactions

» The goal of any DBMS should be o
serialise fransactions

» the computer scientist wants that

» It can be done, buft it takes time
» and brings limitations (2 army problem)

» But most DBMS customers want speed

» and say correctness is less important ®
» SO trade-offs are inevitable

» Next: Productivity vs ..

Productivity vs Safety

» Commercial DBMS (Oracle, SQL Server etc)
» recommend avoiding serializable requirement
» INn 2019 we showed that requiring serialisability
» made many transactions fail in a TPCC demo
» throughput fell off at about 30 clerks
» In the same demo we had StrongDBMS prototype
» Guaranteed transactions serialised
» Outperformed other DBMS in productivity
» throughput continued to increase beyond 100 clerks
» But was a very simple DBMS
» lacking many features DB people expect
» With a radical approach to data structures

» Shareable Data Structures

Shareable Data Structures

» StrongDB’'s magic ingredient was
» SHAREABLE data sfructures throughout

» Our favourite optimistic DBMS Pyrrho
» Did not perform well in the test

» It was natural to re-engineer Pyrrho
» 1o use shareable data structures

» So that it would be equally good
» In high concurrency situations

» Next: Benefit of Shareable

What we gain from Shareable

» Build in the notfion of transaction isolation
» at all levels of implementation
» Structures are shared but never copied
» Immutable, all fields readonly or final
» A changed object has a new root node
» Shares all the old ones with previous version
» Brings great advantages for fransactions
» Isolation, instant snapshot, just forget on rollback
» But is more complex to program

10

» Next: When we add a node

When we add a node

KA

{a) the original shared tree,
the position of modification is marked

.// \.

(b) the path to the position of modification is “deshared”,
new nodes are thicker, shared nodes are shaded

]] T. Krijnen, and G. L. T. Meertens, “Making B-Trees work for B”. Amsterdam :
Stichting Mathematisch Centrum, 1982, Technical Report IW 219/83

Transaction and B-Tree

M. K. Crowe, S Matalonga: StrongDBMS: Built from Immutable Components

12

» Next: Strong vs. Pyrrho

StrongDBMS vs PyrrhoDBMS

» StrongDBMS had simple tables
» No triggers, alter/drop, procedures ..
» SQL parsing done on the client
» (Just enough capabillity for TPCC)
» Both DBMS have persistent tx log

» Serialized is stronger than serializable
» and optimistic fransaction execution

13

» Next: Pyrrho fared poorly

Pyrrho DBMS fared poorly

» It Is optimistic and has serialized tx log

» But also obsessive, Too many features

» Triggers, Cascades, User Defined Types
» Object oriented database objects

» EtCc efc

» We found that this ambition is too much
» Safe but not good for high concurrency
» Outperformed by all other RDBMS

» But — it has RESTViews, big live data...

] 4 » Next: Big Live data..

Big Data and Big Live Data

» The problems with Big Data
» Data is dead, always out of date
» Correct only at the time it was extracted
» Taken out of context, not evolving

» With Big Live Data, data is accessible
» From the source where it lives, evolves
» View-mediated data warehousing

» Using REST for integration
» PyrrhoDB does this really well

15

» Next: The ground rules

16

The ground rules

» Next: Everything shareable

Everything must be shareable

» All fields are readonly and shareable
» Can only be given values in consfructor

» Might lead to very long argument lists
» Unless we use idea of a property free
» Have += operator 1o add a property value

» Pyrrho v/ does this
» Subclasses provide such tree to the base()
» Relocation cascades changes to fields
» Cascades for replacement of an object

17

» Next: Mechanisms

Tree structures

» BTree<K,V> Is iImmmutable, shareable
» When K and V are shareable

» Two-way traversal uses immutable
bookmarks

» Database, Transaction all shareable

» Contents (tables etc) must be shareable
too

» Transaction Is A private copy
» Increments are prepared and committed
» Database is built from the tx log

» Next: Shareable DB objects

18

Shareable database objects

» From SQL synfax
» Table, Domain, Column, View, Role etc
» SQL expressions, literals, functions etc
» SQL statements for DML and stored modules

» TypedValue classes with domain
» TInt, TChar, TBlob, TRow, TArray etc

» RowSefts for collecting results
» RowSefts form a pipeline from base tables
» Some are updateable
» Cursors are a kind of bookmark of TRow

19

» Next: The first steps

The first steps in the experiment

» In 2019 it was safe but not productive
» As many other DBMS were (e.g. PostGRES)
» Both became unproductive above 6 clerks

» Would shareable data structures helpe

» In 2021 a V/ demo with good productivity
» Productivity increasing up to 50 clerks

» But lacked many advanced DBMS features
» And did not have quite the right structures

» The V/alpha experiment confinued
20

» Next: Objectives of the experiment

https://youtu.be/0YaU59LvgLs

Objectives of the experiment

» Pyrrho with shareable data structures
» Can it be done for all featurese

» Even RESTView<e Optimistic execution?

» Would it fix the tfransaction performancee

» What programming lessons can be
learned?

» Would It become unusably slowe
» (StrongDBMS was fast and had shareable d.s.)

21

» Next: Since DBKDA 2021

22

» Next: Progress ..

Progress since DBKDA 2021

» What happens 1o PyrrhoDBMS
» .. If we require shareable data structurese
» The extra complexity slows performance

» to unproductive levels
» TPCC has realistic requirements
» 1 clerk can only enter 16 orders in 10 mins
» In 2021 Pyrrho still could almost do this
» But with 2022 version of Pyrrho only 10
» This may improve with further development

23

» Next: TPCC new order

A New Order in progress

i TPC/C
Setup New Order lDrder Status] Fayment]]

New Qrder
Warehouse: 1 District: IE' Date: 23,/04,/2022 0T7:-32:02
Cogtomer: 53 Name: BARESEPRT Credit: BC %Disc: 3540
Order Humber: 3003 Humber of Linesg: 12 W tax: _1368 D tax:- 1272

Supp W Item Id Item Name Oty 5Stock BYG Price Amount
1 T5744 TTRCR EMOTBH EREGCE 7 51 = £ 16.25 5 11375

Execution Status:

|E' Commit | Step ‘

» Next: Parsing and Queries____,'_'.,h

Parsing and query analysis

» Analyse SQL from left to right

» Add known properties as we find them
» Create RowSets as soon as possible
» Adjust properties later via cascades

» SQL is complex
» Pyrrho has become safer but slower

» Still unwilling to sacrifice correctness

25

» Next: Rowsets replace Queries

RowSets replace Queries

» RowSets are immmutable (of course)
» They naturally form a tree by source

» The SQL standard: derived tables

» Instead of “optimising queries”
» Think of the properties of RowsSets
» E.9. apply a where-condition, grouping
» Change propagates to sources
» RowSet keeps frack of suitable indexes

» And many Rowsets are updatable
26

» Next: Update ajoin

Example: update a join

» Many views and joins can be updated
» e.g. If some of the columns are keys
»in one or more of the joined base tables

» An update to the join then becomes
» an update to one or more of the these tables
» as table instances

» If the table Is remote, we can use POST

27

» Next: SQL code parsed once

SQL code parsed once only

» On definifion of a view or procedure
» Then has its own unigue identifiers
» Avoids conflict with similar names

» Similarly, fable and view references
» Instanced: new ids for their columns etc

» Uids are 64-bit longs, unigue in the DB
» Each range of uids has size 2760

23

» Next: Uids instead of names

Uids instead of identifier chains

» SQL identifiers get replaced by uids
» Unique Identfifiers are just long integers
» Unigue within the database/fransaction

» Refer to a shareable database object
» Column, Expression, Table, RowSet, Procedure,

» Committed objects uids are file location
» Others are private 1o the tfransaction
» Can be lexical position in source SQL
» Or ids of precompiled objects (view, proc)
» Or allocated on a heap

29

» Next: Virtual data warehousing

View-mediated REST access

» A view Info live data (no copying)

[CREATE VIEW sales V
(customer, sales, accSalesShare)
AS SELECT customer, sales,
(SELECT SUM(sales) FROM custSale
WHERE sales »>= u.sales) /
(SELECT SUM(sales) FROM custSale)
FROM custSale AS u]

» Designed for filtering by item
» To discourage retrieval of the entire table

30

» Next: SQL for ABC-Analysis

Example: ABC-Analysis

» Originally, ABC-analysis is a clustering of customers with
regard to their confribution to the sales of a company

» A-customers contribute the most, B is medium, and C-
group customers are least

» The algorithm is defined by 2 threshold values (t1, 12) which
separate A from B and B from C group

» These values are usually 11=50% and 12=85%

Customer accumulS. ... %)
Daimler

Daimler 20000

Bosch 37000 AR%

Siemens 47000 60%

Bosch
Siemens

stikl
stihl 53000 1%

VW 62000 20%
Porsche . 67000

VW
W Porsche

Migros
Migros 71000

ATU
Ford 77700

ATU

Ford

A
A
B
B
B
C
C
C
C

3] » Next: SQL for ABC

SQL for ABC-Analysis

» Let table custSale(customer, sales)

» Query sales_V and assign a group to each customer according to
its sales percentage ordered by descending sales values.

» [SELECT CASE
WHEN accSalesShare <= 0.5 THEN 'A'
WHEN accSalesShare > 0.5 AND accSalesShare <= 0.85 THEN 'B’
WHEN accSalesShare > 0.85 THEN 'C’
ELSE NULL
END as ABC,
customer, sales,
CAST(CAST(soles/(SELECT SUM(sales) FROM sales_V) * 100 as decimal(6,2))
aschar(é)) | | "% ASshare |, ________ — P |

FROM sales_V
ORDER BY sales DESC] "¢ Cveomer|oaces jorwnc |
'|A |Daimler |2e@00,00|25.74 %|
> ReSUH |a |Bosch |17000,00|21.88 %|
ils |Siemens |1eeee,006|12.87 %|
|B |stihl |seee,00 |10.30 %|
B |V |7ee@,00 |9.01 % |
'|c |Porsche |5eee,00 |6.44 % |
‘|c |Migros |4ee@,00 |5.15 % |
'|c |ATU |3cee,00 |4.50 % |
|c |Ford |3200,00 |4.12 % |
|---]--mm---- |-------- |------- |
|sQL>

32 » Next: No query rewriting

No query rewriting

>
>

Consider the <select list> concept in View

If it contain aggregation functions

> AVG, MAX, MIN, SUM, EVERY, ANY, COUNT, STDEV.., COLLECT, FUSION,
INTERSECTION

During rowset traversal rows get added in:

» The resulting rowset has one row per group

» Rows in the source are added in to the result rowset

» Using Registers containing various accumulators, sums, multisets, ..
Now suppose the view is remote (use REST)

» Sending it to a list of remote contributors

This used to require a lot of analysis and rewriting extra column
names for the remote query

COUNT becomes SUM, AVG needs SUM and COUNT, STDEV
needs sums of squares, collections..

We don’t need to do this any more

» Next: How REST works

What happens with REST

» REST operations use standard formats
» For rows we use JSON documents
» An item for each column of the row

» Why not add some extra columns for the
Registers in that rowe

» There Is a Register for each occurrence of
an aggregation function in the select list

» We define how to represent a Register in
JSON

» Next: an example

A RESTView example

» With several remote sources via POST

» Grouped aggregations are interesting

select sum(e)+char_length(f),f from ww
group by f

>We no longer rewrite it, but send as is:

http:/flocalhost:B188/0B/DE select (SUM{E)+CHAR_LEMGTH{F)),F from t group b
HI TP I-_-_- J0OB /DB
select ibJVitJ—LﬂﬂH_Ltﬂu'1irjj.r from t group by F
Returning ETag: "Z3,-1,188"
--> 4 rows
Response ETag: 23,-1,1E48
http:/flocalhost:B188/0C/DC select (SUM{E)+CHAR_LEMNGTH{(F)),F from u group b
AT TP POST JDLC /DL
select (SUM{E)+CHAR _LENGTH{F)),F from u group by F
5555 Returning ETag: "23,-1,159"

-=» 3 rows

36

How does this work?

> E
> 1
> 1

ach database returns its answer
ne data from each has extra fields
ne Regqisters for aggregates by group

> L

npacked and combined by Pyrrho

SQL> select sum(e)+char_length(f),f from ww group by f

|====]====- |
|Cole|F |

8	Four
11	Sechs
9	six
18	Three]

o /'\

» Next: The extra fields
A

Extra Register fields

» The local and remofte servers see the same value
expression

» So the registers are supplied in the left-to-right
ordering

» As a Json document with the following items:
» The string value accumulated by the function if any
» The value of MAX, MIN, FIRST, LAST, ARRAY

> A cljocumen’r containing numbered fields for a multiset
value

» The value of a typed SUM
» The value of COUNT

> qu)sum of squares (if required for standard deviation
etc

» Next: Transactions and REST

Transactions and REST

» Because of the two-army problem
» At most one remote participant

» A set of commit steps is agreed
» The local DB starts the commit
» If the remote DB reports success

» The local DB can complete the
commit

33

» Nexi: The Result of the Experiment

The result of the experiment

» Pyrrho v/ uses shareability throughout
» Safe In high concurrency situations

» It implements Big Live Data prot
» But it is slower

OCOols

» It showcases optimistic execution

» And In some ways is a model -

39

» Next: Future

O follow

Steps

40

» Next: for Pyrrho DBMS

/ \

Next steps for PyrrhoDBMS

» From alpha to beta..

» Versioned object Web applications API
» Based on POCO (plain old C# objects)

» US DoD “Orange book"” security
» Some support for Java
» Finish Window functions

4]

» Next: Working with other DBMS

Working with other DBMS

» REST for server communication

» Common format (JSON), protocol (HTTP1.1)
» Possibly with ETags (RFC/7232), Registers

» As a non-privileged Internet client
» With privileges allocated in the usual way

» Need adaptation to SQL dialects

» Agreement about tfransactions
» Avoid two-army problem

42

» Next: References

Links

Crowe, M. K., Matalonga, S.: Shareable Data

Structures, on
hitps://aithub.com/MalcolmCrowe/ShareableDatas

fructures

» includes source code for StrongDBMS, PyrrhoV7alpha
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable
Transactions, Tutorial, DBKDA 2021

» hitps://www.youitube.com/waichev=t4h-zPBPtSw&it=39s
» https://www.iaria.org/conferences2021 /filesDBKDA21/

» Version 6.3: hitps://pyrrhodb.uws.ac.uk
» 50 clerks demo: hitps://youiu.be/0YaUs2Lvals
» Pyrrho blog: hifps://pyrrhodb.blogspof.com

/ \

' N 1-: R f

https://github.com/MalcolmCrowe/ShareableDataStructures
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s
https://www.iaria.org/conferences2021/filesDBKDA21/
https://pyrrhodb.uws.ac.uk/
https://youtu.be/0YaU59LvgLs
https://pyrrhodb.blogspot.com/

44

References

Crowe, M. K., Laux, F.: Reconsidering Optimistic Algorithms for
Relational DBMS, DBKDA 2020

Crowe, M. K., Matalongaq, S., Laiho, M: StrongDBMS, built from
immutable components, DBKDA 2019

Crowe, M. K., Fyffe, C: Benchmarking StrongDBMS, Keynote
speech, DBKDA 2019

Crowe, M. K., Laux, F.: DBMS Support for Big Live Data, DBKDA
2018

Crowe, M K., Begg, C.E., Laux, F., Laiho, M: Data Validation for Big
Live Data, DBKDA 2017

Krijnen, T., Meertens, G. L. T.: “Making B-Trees work for B".
Amsterdam : Stichting Mathematisch Centrum, 1982, Technical
Report IW 219/83

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2018/filesDBKDA18/MalcolmCrowe_DBMS_Support.pdf

