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Feature importance measures driving error analysis in manufacturing

Production

Processes

AI

Error Predictions

Quality

Management

Error Prediction Error Analysis Cause Analysis

Insights on errors

(feature importance)
Production Data

• Data driven error analysis can leverage predictive models for error cause analysis

• Quality Management analyzes features pointing at “interesting” phenomena

• Feature importance measures provide insights to the Human-In-the-Loop

• State-of-the-Art feature importance measures are not tailored to this task

Contribution: 

• Define an applied notion of “interestingness” and proposed three approaches to determine this as feature importance measure

• Evaluating and comparing with state-of-the-art importance measures on synthetic and real-world data
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Agenda

• Motivation and Use Case

• Challenges with feature importance in error analysis

• Proposed SHAP-based approaches to determine regional feature 
importance

• Experiments and results

• Conclusion
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Explaining errors in manufacturing data driven quality processes

• Proactive error prevention for rare but costly 
errors in production [1]

• Data driven error analysis approach to 
determine error causes

• Domain experts evaluate production data and 
take corrective steps in production

• Traditionally, cause analysis is performed by 
evaluating input features with correlated errors

• Increasing number of features requires 
automated feature ranking methods 

• Which measures of feature importance 
suits the task for cause analysis?

Histograms of features with highlighted errors 

traditionally used for cause analysis [1]. Color 

coded error percentage: white=0%, black=100%
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Challenges with feature 
importance

Global importance Local importance



Feature Importance

8Furtwangen University

Challenges with feature importance in cause analysis

Global

Local

Regional

Holistic view:

• Importance based on global “averages”

• Missing local phenomena

• Examples: Gain, Weight/Frequency, Gini, Abs. Avg. SHAP, …
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Challenges with feature importance in cause analysis

Global

Local

Regional

Instance based:

• Importance based on single samples

• Isolated samples provide little general insights

• Missing context e.g., relations to other samples
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Challenges with feature importance in cause analysis

Global

Local

Regional

What is needed for feature importance in cause analysis?

A feature should have high importance if it contributes to interesting predictions [1]:

- it provide at least sometimes strong hints for errors

- it is relevant in at least some cases

- it allows to draw conclusions upon inspection

Holistic but targeted to 

interesting aspects
Global and 

generalizing Case specific
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Feature importance for cause analysis

SHAPley Values

Tree Explainer

Global Importance

“The Shapley value is the average marginal contribution of a feature value 
across all possible coalitions.” [3]

• Desirable properties: Accuracy, consistency, missingness

• Shapley values can be computed for each prediction individually

• SHAP (SHapley Additive exPlanation) 
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Feature importance for cause analysis

SHAPley Values

Tree Explainer

Global Importance

The contribution 𝜙𝑓 ∈ ℝ of feature 𝑓 on model 𝑚 is attributed using Shapley 

values [3]:

𝜙𝑓 = 

𝑆⊆𝑀\{𝑓}

𝑆 ! 𝑀 − 𝑆 − 1 !

𝑀!
[𝑚𝑥 𝑆 ∪ {𝑓} − 𝑚𝑥 𝑆 ]

where 𝑀 is the number of all features and S the set of input values.
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Feature importance for cause analysis

SHAPley Values

Tree Explainer

Global Importance

Figure – “SHAP feature attribution ”: Contribution of each feature as change in the expected model 
prediction when conditioning on that feature (source [4]). 

The contribution 𝜙𝑓 ∈ ℝ of feature 𝑓 on model 𝑚 is attributed using Shapley 

values [3]:

𝜙𝑓 = 

𝑆⊆𝑀\{𝑓}

𝑆 ! 𝑀 − 𝑆 − 1 !

𝑀!
[𝑚𝑥 𝑆 ∪ {𝑓} − 𝑚𝑥 𝑆 ]

where 𝑀 is the number of all features and S the set of input values.

0 𝐸[𝑚 𝑧 ] 𝐸 𝑚 𝑧 𝑧1 = 𝑥1] 𝐸 𝑚 𝑧 𝑧1,2 = 𝑥1,2]𝑚(𝑥)

𝜙1

𝜙2

𝜙4
𝜙3
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Feature importance for cause analysis

SHAPley Values

Tree Explainer

Global Importance

• Implementation for trees [4] (i.e., XGBoost)

• Computation of exact Shapley values in polynomial time

• 𝑂 𝑇𝐿𝐷2 , where T is the number of trees, L is the maximum number of 
leaves in any tree and D the maximal depth of any tree
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Feature importance for cause analysis

SHAPley Values

Tree Explainer

Global 
Importance

Idea: Features with large absolute Shapley values are important

Average absolute Shapley values per feature across the data [4]:

𝐼𝑓 =
1

𝑛


𝑖=1

𝑛

|𝜙𝑓
𝑖
|
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Importance measures that reveal insights on errors [1]

Name Intuition Formal Definition

Max Shap Highest Shapley value across 

analysed dataset
𝑀𝑎𝑥 𝑆𝐻𝐴𝑃𝑓 𝑚, 𝑆 = max{𝜙𝑓(𝑚, 𝑥)|𝑥 ∈ 𝑆}

Max Main Like Max SHAP but without 

interaction effects
𝑀𝑎𝑥 𝑀𝑎𝑖𝑛 𝐸𝑓𝑓𝑒𝑐𝑡𝑓 𝑚, 𝑆 = max{𝜙𝑓 𝑚, 𝑥 −

𝑗≠𝑓
𝜙𝑓,𝑗 𝑚, 𝑥 | |𝑥 ∈ 𝑆}

Range Shap Range of Shapley values across 

analysed dataset
𝑅𝑎𝑛𝑔𝑒 𝑆𝐻𝐴𝑃𝑓 𝑚, 𝑆 = max{𝜙𝑓(𝑚, 𝑥)|𝑥 ∈ 𝑆} − min{𝜙𝑓(𝑚, 𝑥)|𝑥 ∈ 𝑆}

Fundamental idea:

• Aggregate Shapley values so that “interesting” features get a high score (i.e., not 

just averaging them for a global)



Proposed SHAP-based regional feature importance measures

22Hochschule Furtwangen



Fundamental Idea

23Furtwangen University

Proposed Regional Feature Importance Measures

Outlier-Approach

Micro-Average Approach

Slope-Approach

Fundamental idea:

• A scoring-function 𝑔: 𝑔(𝑓, 𝑋,… )→ ℝ that aggregates SHAP values and 
scores „interesting“ features high

𝑓: target feature

𝑋: dataset
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Proposed regional feature importance measures

Outlier-
Approach

Micro-Average Approach

Slope-Approach

Idea: A feature with abnormal Shapley values are potentially interesting

Perform anomaly detection over the distribution of SHAP values:

𝑓: target feature

𝑋: dataset

𝜎: standard deviation

λ: multiplier of 𝜎

ത𝜙𝑓: mean shap value

𝑔 𝑓, 𝑋, 𝜆 = 

𝑥′∈ outl(λ,X)

𝜙𝑓(𝑥′)

outl(λ, X) = 𝑥 ∈ 𝑋 𝜙𝑓(𝑥) ≥ ത𝜙𝑓(𝑋) + 𝜆 𝜎(𝜙𝑓 𝑋 )}
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Proposed regional feature importance measures

Outlier-Approach

Micro-Average 
Approach

Slope-Approach

Idea: A feature is of interest if it shows high Shapley values within a small 
feature value range

Partition the feature and determine the average SHAP values over equally 
sized intervals:

𝑔 𝑓, 𝑋, 𝑛 = max ത𝜙𝑓 𝑋𝑖 𝑖 = 0,… , 𝑛 − 1}

𝑋i = 𝑥 ∈ 𝑋 𝑖 ∗ 𝑑 ≤ 𝑥 < 𝑖 ∗ 𝑑 + 𝑑

𝑓: target feature

𝑋: dataset

𝑛: number of intervals

ത𝜙𝑓: mean shap value

𝑋𝑖: feature interval
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Proposed regional feature importance measures

Outlier-Approach

Micro-Average Approach

Slope-Approach

Idea: A feature with rapid changes in Shapley values is of interest

Partition the feature and determine regression slopes over the means of SHAP 
values over the intervals:

𝑓: target feature

𝑋: dataset

𝑛: number of intervals

w: window size

ത𝜙𝑓: mean shap value

𝑋𝑖: feature interval

𝑔 𝑓, 𝑋, 𝑛, 𝑤 = 𝑚𝑎𝑥 |𝑠𝑙𝑜𝑝𝑒 𝑤𝑗 | 𝑗 = 0,… , 𝑛 − 1}

𝑤𝑗 = { ത𝜙𝑓 Xj , … , ത𝜙𝑓 Xj+w }

ത𝜙𝑓 𝑋𝑖 = 𝑖 ∗ 𝛽 + 𝜖 | ∀ ത𝜙𝑓 𝑋𝑖 ∈ 𝑤𝑗
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Experiments
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Setup 1: “Synthetic Dataset”

Experiments with synthetic data

• Creation of simple data sets with known 
“interestingness” of features

• Comparison of proposed importance measures 
with established importance measures against 
know ground truth

Setup 2: “Real-World Dataset”

Experiments with real-world manufacturing data

• Scoring of feature with proposed and 
established importance measures

• Manual inspection of features regarding 
“interestingness”

• Binary classification with XGBoost with training score f1=1.0

• Computation of importance score on the training set 
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Example experiment with synthetic data

• Features A, B with e.g., uniform 
distribution 0 to 1 and one feature noise

• 3% of data points have errors

• If 0.4 < B < 0.425, then 8% of data points 
have errors

• If A < 0.6, then 2.5% of data points have 
errors

R

a

n

k

Classic Metrics SHAP-based Metrics Proposed Metrics

Weight Gain Cover Total Gain Total Cover
Average

Abs SHAP
Max Main Max Shap

Range 

SHAP

Slope Approaches
Micro-Avg 

Approach

Outlier 

ApproachMax SHAP IQR SHAP

1 A A A A A A A A A B B B B

2 B B B B B B noise noise B Noise A A A

3 noise noise noise noise noise noise B B noise A noise noise noise

InterestingNot interesting

Figure “Shap plots of feature A and B”: Not interesting feature A (left) 

and interesting feature B (right). Color coded – red: error, blue: non 

error, green marker: area of interest
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• Secom dataset originating from a semiconductor manufacturer [6]

• 591 features and 1667 instances with 106 error instances

• Manual assessment of the top five features of all importance measure

• Comparison of grouped metrics with proposed metrics

R
a
n
k

Classic Metrics SHAP-based Metrics Proposed Metrics

Weight Gain Cover Total Gain Total Cover
Average

Abs Shap
Max Main Max Shap

Range 
Value

Slope Approaches Micro-Avg
Approach

Outlier 
ApproachMax Shap IQR Shap

1 F59 F210 F168 F59 F59 F59 F59 F59 F59 F59 F59 F64 F59

2 F333 F539 F429 F333 F64 F21 F64 F64 F64 F64 F64 F59 F423

3 F103 F29 F426 F64 F426 F333 F40 F426 F333 F429 F33 F103 F64

4 F2 F109 F100 F132 F121 F488 F426 F333 F103 F333 F130 F40 F333

5 F33 F304 F331 F33 F574 F103 F153 F40 F33 F475 F429 F121 F2
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Agreements of 
importance

Disagreements of 
importance

Highlights of proposed
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Conclusion and future work

Conclusion:

- Shapley values have potential as the basis for regional 
importance measures 

- Regional feature importance measures can pinpoint interesting 
features for cause analysis in manufacturing

- Experiments show the usefulness of proposed SHAP-based 
approaches for cause analysis

Future Work:

- Evaluation on “interestingness” needs more objective measure

- Evaluation of importance measures with domain experts
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