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Introduction
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 Data preprocessing is a crucial step in Machine Learning

 Preprocessing is performed to prepare the compatible dataset for analysis

 Preprocessing is mainly categorized into two types:

 Type1: model compatible preprocessing

 Type 2: quality enhancement preprocessing

 AutoML Libraries focus on Type 1 preprocessing

 This paper is focused on Type 2 preprocessing which have been not implemented in AutoML Libraries



Motivation
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 Extraction of features (Feature Engineering), selecting the most important features among a big list is a time-

consuming step/process to do manually

 This paper is aimed to automate the above-mentioned manual process

 Production dataset can be huge and can take few hours to many days to train a model

 This paper also introduces a Sampling method to sample the dataset statistically in a better way compared to mostly 

used random sampling which inturn reduces the computation time to train a model but retains the efficiency



Related Work
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 Cognito: Automated Feature Engineering for Supervised Learning [1]

 Generating new features by transforming existing features

 Explore Kit: Automatic Feature Generation and Selection [2]

 Trimming down the generated features with help of Ranking Classifier

 Cochran, W. G. Sampling techniques [3]

 Stratified Sampling is the well-known sampling, but it is mathematically complex to sample

 This sampling technique closely resembles the original distribution statistics 

 Efficient Sampling Methods for Discrete Distributions [6]

 Adjusting the Sampling methods to make it faster to compute

 Analysis of variance (ANOVA) comparing means of more than two groups [4]

 ANOVA gives a preliminary score of correlation of each feature with Target feature in a dataset



Methodology – Feature Selection
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 ANOVA:

 F-test ANOVA is the ratio of variability between 

groups to variability within group

 𝐹 =
𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠
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 Variance Threshold:

 Features with 0 variance,

 Categorical features with 100 variance are removed 

(Name, Machine ID etc.,)

 Correlation Threshold:

 Features with high correlation of 95% are removed
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Methodology – Bin-based Sampling 
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 𝑃 𝑏𝑖 𝐵𝑆 = 1, 𝑃 𝑠 𝐵𝑆 = 𝑃 Τ𝑠 𝑏𝑖 𝐵𝑆
=

1

𝑠𝑖𝑧𝑒(𝑏𝑖)
,

BS = bin-based sampling

 Population size = 𝑁, Sample size = 𝑆, features = 𝑀, 

sample = 𝑠, feature = 𝑓

 Number of bins = 𝑛 (𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛)
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Random 
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Methodology – Target Discretization

Akshay Paranjape, Praneeth Katta 9

 Target Discretization transforms Regression task to Classification task by converting numerical output feature to 

categorical values 

 This can be used for the datasets where regression R2-score is significantly low or unacceptable

 The prediction of categorical values has less degree of freedom than the prediction of numerical values

 In this, each data point in the continuous domain is converted into a discrete class domain

 Different types of target discretization methods can be considered based on domain expertise

 As an automated solution, we have considered the discretization of the target variable based on its z-score values



Methodology – Hybrid Feature Engineering
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Inspired from two research papers –

Cognito[1] and Explore Kit[2]



Experiments and Results – Feature Selection
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Experiments and Results – Bin-based Sampling
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 Kullback Leibler divergence compares multi variate distribution of population and sample

 𝐷𝐾𝐿( 𝑃 | 𝑄 = σ𝑥∈𝜒𝑃 𝑥 . ln(
𝑃(𝑥)

𝑄(𝑥)
) [5]

KL-
Divergence

[7]



Experiments and Results – Bin-based Sampling
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 Sample Size: Cochran’s formula is used to calculate sample size [3]



Experiments and Results – Hybrid Feature Engineering
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Experiments and Results – Overall Preprocessing pipeline
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Outlook
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 This paper reviews and suggests some advanced preprocessing steps that can either be used individually or combined 

as a pipeline

 Datasets that have inter-feature dependency can be observed to perform better

 The proposed method preprocess the data without domain knowledge in an automated manner

 This paper also introduces a new sampling method that can be used for general application as well as for ML-based 

modeling

 A significant performance improvement of around 4-7% is observed for the analysis conducted with the baseline 

model on OpenML datasets

 For the same set of datasets, a marginal improvement was observed for analysis with the AutoML libraries

 The proposed pipeline is currently not parallelized. Parallelization can significantly reduce the time for feature 

engineering and this we would like to focus on in our future work
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