The Twelfth International Conference on Advanced Collaborative Networks, Systems and Application COLLA 2022

Automated Data Preprocessing for Machine Learning Based Analyses

Authors: Akshay Paranjape, Praneeth Katta, Markus Ohlenforst

Presenter: Praneeth Katta, Machine Learning Engineer

IconPro GmbH, Aachen, Germany

Akshay Paranjape Team Lead - ARES

Akshay Paranjape has a master's degree in Simulation Sciences from RWTH Aachen with a focus on Machine Learning. During his studies, he worked at Zeiss in the field of Computer Vision for classification problems. His thesis work on "Open Set Classification using Deep Learning" is recognized as IP of Zeiss. Prior to his thesis, he worked at the Informatics Department at RWTH Aachen and obtained his bachelor's degree in Physics from IIT Delhi, India.

Praneeth Katta Machine Learning Engineer

Praneeth obtained his M.Sc degree in Simulation Science at the RWTH Aachen University with a background in Mechanical Engineering (B.Sc) at the Ramaiah Institute of Technology, in India. At IconPro, he is part of the Ares team and assists developing and deploying this software for Predictive Quality and Process Optimization.

Contents

- Introduction and Motivation
- Related work
- Methodology
 - Feature Selection
 - Sampling Bin-based
 - Target Discretization
 - Hybrid Feature Engineering
- Experiments and Results
- Outlook
- References
- About us

Introduction

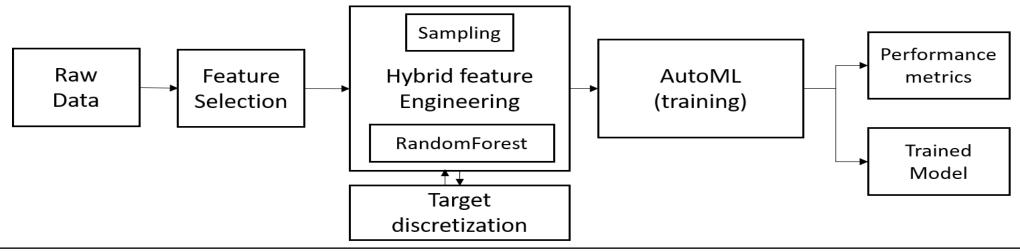
- Data preprocessing is a crucial step in Machine Learning
- Preprocessing is performed to prepare the compatible dataset for analysis
- Preprocessing is mainly categorized into two types:
 - Type1: model compatible preprocessing
 - Type 2: quality enhancement preprocessing
- AutoML Libraries focus on Type 1 preprocessing
- This paper is focused on Type 2 preprocessing which have been not implemented in AutoML Libraries

Name	AutoSklearn	AutoKeras	TPOT	AutoGluon	H2O
Balancing	yes	no	no	yes	yes
Categorical encoding	yes	yes	yes	yes	yes
Imputation	yes	yes	no	yes	yes
Standardization/Normalization	yes	yes	no	yes	yes
Others	Densifier, PCA, minority coalescence, select percentile	Data augmentation	Feature selector	Introduce "unknown category"	None

TABLE I PREPROCESSING STEPS INCLUDED IN DIFFERENT AUTOML SOLUTIONS

Motivation

- Extraction of features (Feature Engineering), selecting the most important features among a big list is a timeconsuming step/process to do manually
- This paper is aimed to automate the above-mentioned manual process
- Production dataset can be huge and can take few hours to many days to train a model
- This paper also introduces a Sampling method to sample the dataset statistically in a better way compared to mostly used random sampling which inturn reduces the computation time to train a model but retains the efficiency



Related Work

- Cognito: Automated Feature Engineering for Supervised Learning [1]
 - Generating new features by transforming existing features
- Explore Kit: Automatic Feature Generation and Selection [2]
 - Trimming down the generated features with help of Ranking Classifier
- Cochran, W. G. Sampling techniques [3]
 - Stratified Sampling is the well-known sampling, but it is mathematically complex to sample
 - This sampling technique closely resembles the original distribution statistics
- Efficient Sampling Methods for Discrete Distributions [6]
 - Adjusting the Sampling methods to make it faster to compute
- Analysis of variance (ANOVA) comparing means of more than two groups [4]
 - ANOVA gives a preliminary score of correlation of each feature with Target feature in a dataset

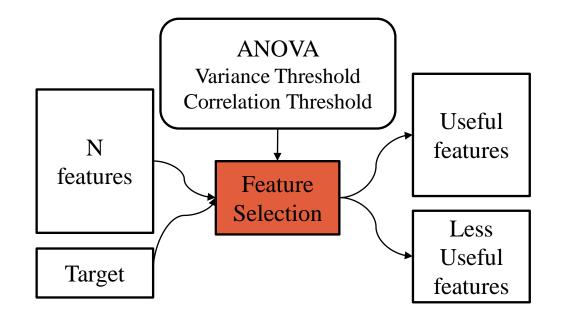
Methodology – Feature Selection

ANOVA:

- F-test ANOVA is the ratio of variability between groups to variability within group
- $F = \frac{Variability \ between \ groups}{Variability \ within \ group}$

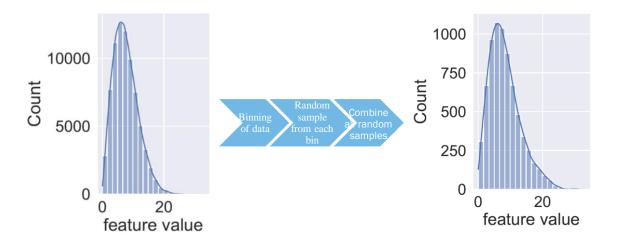
•
$$F = \frac{S_b^2}{S_w^2} = \frac{\sum_{j=1}^m n_j (\overline{x_j} - \overline{x})^2 / m_{m-1}}{\sum_{j=1}^m \sum_{i=1}^n (x_{ij} - \overline{x_j})^2 / m_{m-1}}$$

- Variance Threshold:
 - Features with 0 variance,
 - Categorical features with 100 variance are removed (Name, Machine ID etc.,)
- Correlation Threshold:
 - Features with high correlation of 95% are removed



Methodology – Bin-based Sampling

- $P(b_i)_{BS} = 1$, $P(s)_{BS} = P(s/b_i)_{BS} = \frac{1}{size(b_i)}$, BS = bin-based sampling
- Population size = N, Sample size = S, features = M, sample = s, feature = f
- Number of bins = $n (b_1, b_2, b_3, \dots, b_n)$



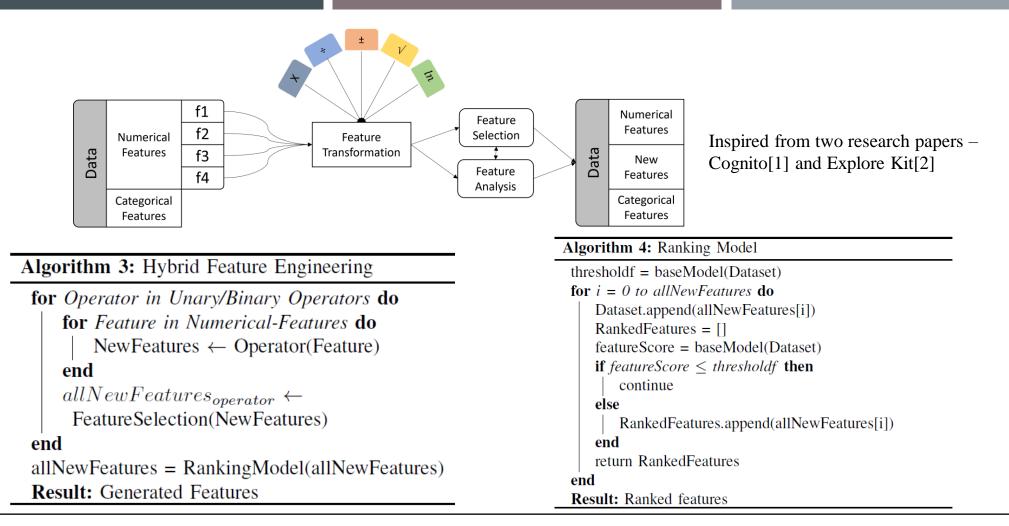
for $Feature_i$ in Features do
if $Feature_i$ is Categorical then
for Category in $Categories_{Feature_i}$ do
Sample \leftarrow RandomSample(Category)
end
featureSample \leftarrow Concat(Sample)
else
Bins \leftarrow Discretize($Feature_i$)
for Bin in Bins do
Sample \leftarrow RandomSample(Bin)
end
featureSample \leftarrow Concat(Sample)
end
end
BinbasedSample \leftarrow Concat(featureSample)
Result: Binbased Sample

8

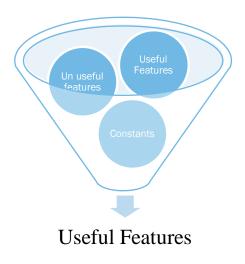
Methodology – Target Discretization

- Target Discretization transforms Regression task to Classification task by converting numerical output feature to categorical values
- This can be used for the datasets where regression R2-score is significantly low or unacceptable
- The prediction of categorical values has less degree of freedom than the prediction of numerical values
- In this, each data point in the continuous domain is converted into a discrete class domain
- Different types of target discretization methods can be considered based on domain expertise
- As an automated solution, we have considered the discretization of the target variable based on its z-score values

Methodology – Hybrid Feature Engineering



Experiments and Results – Feature Selection



Using Adaboost classifier/regressor

TABLE II	
VALIDATION OF FEATURE SELECTION TECHNIQUE FOR CLASSIFIC	ATION TASK

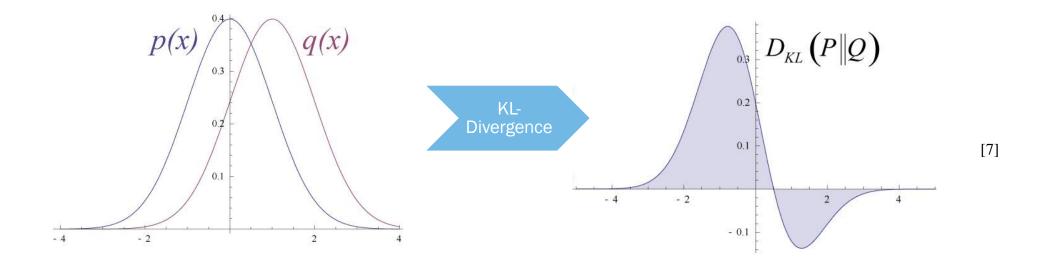
OpenML dataset	Accuracy w/o	Accuracy with	Number of features	Difference
OpenML dataset	feature selection	feature selection	removed	in accuracy
11	0.607	0.607	3	0
54	0.753	0.753	0	0
188	0.579	0.579	0	0
333	0.908	0.908	3	0
335	0.977	0.977	2	0
470	0.661	0.661	4	0
1459	0.588	0.588	0	0
1461	0.692	0.692	2	0
23381	0.560	0.560	5	0
amazon-employee-access	0.943	0.943	3	0
australian	0.857	0.857	2	0
bank-marketing	0.692	0.692	2	0
credit-g	0.761	0.761	2	0
sylvine	0.941	0.941	7	0

TABLE III VALIDATION OF FEATURE SELECTION TECHNIQUE FOR REGRESSION TASK

OpenML dataset	dataset r2-score w/o r2-score with feature selection feature selection		Number of features removed	Difference in r2-score
537	0.484	0.484	0	0
495	0.616	0.616	5	0
344	0.999	0.999	2	0
215	0.948	0.948	1	0
189	0.579	0.579	0	0
507	0.391	0.390	0	0

Experiments and Results – Bin-based Sampling

- Kullback Leibler divergence compares multi variate distribution of population and sample
- $D_{KL}(P ||Q) = \sum_{x \in \chi} P(x) . \ln(\frac{P(x)}{Q(x)})$ [5]



Experiments and Results – Bin-based Sampling

OpenML dataset	Mean of KL-divergence Bin-Based sampling	Mean of KL-divergence Stratified sampling	Mean of KL-divergence Random sampling	Time (in sec) Bin-Based sampling	Time (in sec) Stratified sampling
183	0.017	0.173	0.057	0.359	5.230
223	0.067	0.079	0	0.273	7.600
287	0.076	0.356	0.027	0.399	4.807
307	0.0	0.097	0.006	0.214	7.572
528	0.0	0.0215	0.0	0.054	0.489
537	0.190	0.886	1.160	2.052	133.939
550	0.0	0.011	0.004	0.302	0.738
Amazon-employee-access	0.019	0.460	0.753	0.466	2.112
Blood-transfusion	0.065	0.002	0.001	0.062	0.069
Phoneme	0.0	0.168	0.143	0.580	1.383

TABLE IV SAMPLING COMPARISON ON OPENML DATASETS CALCULATED OVER 100 TRIALS

Sample Size: Cochran's formula is used to calculate sample size [3]

Experiments and Results – Hybrid Feature Engineering

TABLE V Hybrid Feature Engineering for classification datasets with baseline model

OpenML datasets	Number of features	Number of classes	Accuracy before	Accuracy after	Percentage Gain	New features
188	14	5	0.466	0.506	8.386	2
1461	7	2	0.692	0.718	4.748	2
1459	7	10	0.588	0.635	7.952	1
54	18	4	0.753	0.759	0.786	2

TABLE VI Hybrid Feature Engineering for regression datasets with baseline model

OpenML datasets	Number of features	r2-score before	r2-score after	Percentage Gain	New features
189	8	0.579	0.615	6.227	1
507	6	0.390	0.411	5.361	1
537	8	0.484	0.494	2.000	1
495	13	0.616	0.632	2.700	2

Experiments and Results – Overall Preprocessing pipeline

TABLE VII

OVERALL PREPROCESSING PIPELINE PERFORMANCE COMPARISON WITH AUTOML LIBRARIES (CLASSIFICATION - ACCURACY)

OpenML datasets	AutoGluon		AutoSk	AutoSklearn		H2O		RandomForest	
	w/o	W	w/o	W	w/o	W	w/o	W	
188	0.728	0.726	0.674	0.696	0.717	0.739	0.466	0.506	
1461	0.914	0.914	0.906	0.906	0.907	0.907	0.692	0.718	
1459	0.815	0.82	0.919	0.919	0.922	0.927	0.588	0.635	
54	0.858	0.857	0.839	0.839	0.707	0.708	0.753	0.759	

TABLE VIII

OVERALL PREPROCESSING PIPELINE PERFORMANCE COMPARISON WITH AUTOML LIBRARIES (REGRESSION - R2-SCORE)

OpenML datasets	AutoGluon		AutoSk	AutoSklearn H2		H2O		RandomForest	
	w/o	W	w/o	W	w/o	W	w/o	W	
189	0.913	0.913	0.902	0.903	0.913	0.918	0.579	0.615	
507	0.731	0.741	0.753	0.753	0.762	0.761	0.390	0.411	
537	0.815	0.821	0.862	0.865	0.861	0.869	0.484	0.494	
495	0.496	0.495	0.494	0.494	0.441	0.442	0.616	0.632	

Outlook

- This paper reviews and suggests some advanced preprocessing steps that can either be used individually or combined as a pipeline
- Datasets that have inter-feature dependency can be observed to perform better
- The proposed method preprocess the data without domain knowledge in an automated manner
- This paper also introduces a new sampling method that can be used for general application as well as for ML-based modeling
- A significant performance improvement of around 4-7% is observed for the analysis conducted with the baseline model on OpenML datasets
- For the same set of datasets, a marginal improvement was observed for analysis with the AutoML libraries
- The proposed pipeline is currently not parallelized. Parallelization can significantly reduce the time for feature engineering and this we would like to focus on in our future work

References

[1] U. Khurana, D. Turaga, H. Samulowitz and S. Parthasrathy, "Cognito: Automated Feature Engineering for Supervised Learning," 2016 IEEE (ICDMW), Barcelona.

[2] G. Katz, & E. Shin & D. Song, 2016. ExploreKit: Automatic Feature Generation and Selection.

[3] W. G. Cochran, APA (6th ed.), 1977. Sampling techniques. New York: Wiley.

[4] H. Y. Kim. Analysis of variance (ANOVA) comparing means of more than two groups.

[5] S. Kullback, R. A. Leibler, On information and sufficiency, 1951. The Annals of Mathematical Statistics.

[6] K. Bringmann and K. Panagiotou , Efficient Sampling Methods for Discrete Distributions.

[7] kav.lbp2ampcoil.fun/kl-divergence-between-two-gaussians.html (image).

Our team is...

YOUNG MOTIVATED DIVERSE SMART EFFICIENT HARD-WORKING CAPABLE QUALIFIED PROFESSIONAL PASSIONATE

Managing Director

Dr. Markus Ohlenforst

Computational Engineer, PHD in Production Technology, Team Lead at WZL

Managing Director

Dr. Martin Peterek

Industrial Engineer, PHD in Production Technology, Managing Director at WZL Advisory Board

Dr. Edgar Dietrich

Reknown Industrial Statistician, Founded & sold Q-DAS, Entrepreneur Advisory Board

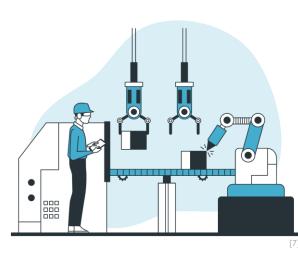
Prof. Dr. Robert Schmitt

Electrical Engineer, Reknown Production Researcher, Director at WZL

AI IN PRODUCTION

Intuitive **Automated** Platform agnostic solutions for the actual Stakeholders

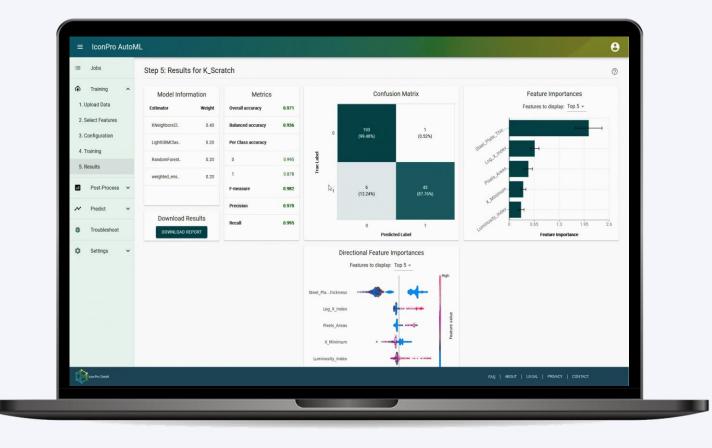
[8]

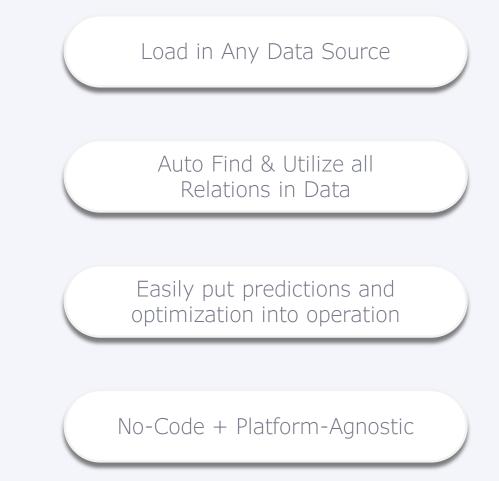


Production and Quality Managers & Process Engineers.

[9]

PREDICTIVE QUALITY SOLUTION ARES





THANKYOU

If any questions, you can contact us.

- Akshay Paranjape
 - akshay.paranjape@iconpro.com
- Praneeth Katta
 - praneeth.katta@iconpro.com

