

Customizability in Preventing Loss of Interest in Ambient Displays for Behavior Change

Shiori Kunikata and Kaori Fujinami*

Department of Bio-Functions and Systems Science, Tokyo University of Agriculture and Technology *corresponding: fujinami@cc.tuat.ac.jp

Background: Ambient displays

[1] J. Froehlich, et al., "Ubigreen: Investigating a mobile tool for tracking and supporting green transportation habits," CHI'09.

Problem in long-term use

Loss of interest

□ The system's effects on behavior change may be diminished.

Background: A model of Losing Interest

Modified a model of mental states of children playing with robots [2] to fit with long-term use of ambient displays by adding two elements: habituation and distrust.

Feeling that all the functions and

system does not follow their

wishes or information.

[2] K. Abe, et al. "Robots that play with a child: Application of an action decision model based on mental state estimation," *Journal of the Robotics Society of Japan*, 31(3), 2013.

Ambient 2022 | S. Kunikata & K. Fujinami (c) All rights reserved 2022.

TAT Our approach

Detect the signs of loss of interest and intervene the user to address the states before the users completely lose interest.

- What are the signs of loss of interest?
- How to detect them?
- How to address the states of "being losing interest"?

[3] S. Kunikata, et al., "Involvement of a system to keep users interested in the contents of ambient persuasive display," GCCE2021.

Experimental Prototype System: Design and Implementation

Increased sedentary time and deteriorating health due to increase time at home in CoVID-19 era

Be active at home in "stay home" campaign of CoVID-19 era, e.g., moving around and performing exercises

System overview

- Basic feedback
 - Employs a growth metaphor

Note: b1, b2, d1, d2, and e represents the subfigures in the next slide

- Positive feedback: A virtual tree grows when the non-sedentary time per hour (HA_h) exceeds a certain ratio (th): (b1)
- Negative feedback: A virtual tree gets thinner if HA_h does not exceed th, and the tree breaks at the fourth stage: (b2)
- Aims at improving behavior through the aspiration to increase tree growth.

 $HA_{h} = \frac{time \ at \ home_{h} \ -inactive \ time_{h}}{time \ at \ home_{h}}$

HA_h (Home Activeness) between hour h and h+1: (a)

- Two types of active involvement strategies
 - 1. Incremental and ad hoc customization: (d1) and (d2)
 - 2. Initial and goal customization: (e)
 - \rightarrow To be evaluated

TAT Major functional components

Ambient 2022 | S. Kunikata & K. Fujinami (c) All rights reserved 2022.

Interest level estimation

<u>Hypothesis</u>

 A negative correlation exists between the frequency of display viewing and the level of habituation and/or distrust

<u>Result</u>

- Negative correlation (mean (S.D.): -0.60 (0.39)) was found in 8/9 persons.

The frequency of viewing the display decreases as the interest is lost.

Customization 1: Incremental and ad-hoc customization

Triggered by the user <u>Triggered by the system</u> $Interest\ loss\ ratio = \frac{VF_t}{VF_{1st}} < 0.516$ Can be changed at anytime VF: Viewing Frequency - VF_t : VF at time t VF_{1st} : VF on the 1st day of use 画面の好きな場所をクリックして、色や形をカスタマイズしません... 画面の好きな場所をクリックして、色や形をカスタマイズしませんか? (Pop-up) Tap and change the shape or color! (d1) Color Color Change Shape Change 好きな色を選択 You chose berry : #EC96A4 Color OK (d2) Shape 好きな葉のタイプを選択 You chose shape Shape OK

Ambient 2022 | S. Kunikata & K. Fujinami (c) All rights reserved 2022.

TA

Customization 2: Initial and goal customization

Set the goal appearance before use and the user aims for it.

TA

Experiment

Objectives and Methodology

Objectives

Investigate the effectiveness of the proposed feedback and customization methods

Methodology

- Six university students (20s; two females and four males)
 - Not given any specific instructions regarding their time at home
- Three conditions, i.e., system configurations, 12 days each (5 weeks in total).
 - With ad-hoc customization
 - With goal customization
 - Without customization (baseline)

- Evaluation items
 - Quantitative: viewing frequency (VF) and home activeness (HA)
 - Qualitative: Questionnaire survey at the end of each condition

Result: Effective customization method by user type (1)

Highly Motivated (HM): 3 persons

- High home activeness (HA) and view frequency (VF) throughout experimental period
- Preferred: Ad hoc customization > goal customization > baseline

Time trends of a participant in the HM type who used the system without customization (baseline) for the third option.

- Highly motivated by tree growth
- Changing the appearance of the tree made me refresh.

Gradually forgot the goal appearance (in condition of goal customization)

Result: Effective customization method by user type (2)

Gradually Un-Motivated (GUM): 2 persons

- HA and VF gradually decreased.
- They preferred goal customization, allowing them to set a goal tree first.

Time trends of a participant in the GUM type who used the system with goal customization as the first option.

- At the beginning, motivated to some extent
- Lost interest in the middle of experiment
- Never used ad-hoc customization that need voluntary operation

Result: Effective customization method by user type (3)

Poorly Motivated from the beginning (PM): 1 person

- Low HA from beginning to end.
- Tended not to use the system continuously

Time trends of a participant in the PM type who used the system with goal customization as the second option.

- Unaware of the risk of being sedentary at home
- Not conscious enough to change behavior through an ambient approach

Conclusion

Ambient 2022 | S. Kunikata & K. Fujinami (c) All rights reserved 2022.

TAT Conclusion

Findings

- Correlation between viewing frequency and loss of interest
- Effective system intervention methods for loss of interest differ depending on the type of user.
 - HA: Ad-hoc customization was effective.
 - GUM: Setting goal at the beginning was important.
 - PM: The importance of changing behavior should be communicated.
- Distrust of the system
 - Feedback rule, e.g., Tree growth was only for time spent in the house although the user was active in the office.
 - System malfunction, e.g., failure in synchronizing between health tracker and the ambient display

Future work

- Intervention strategies should be tailored to users' motivations and lifestyles
- The method of handling distrust of the system should be investigated.