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Presenter: Dr. Christian Prehofer

Ø 15+ years industry experience in telecom, Internet and automotive
Ø Currently working at hdmi is

Ø 10+ years experience in university and applied research labs

Ø Lecturer at TU München, supervised multiple PhDs

Ø One successful startup on indoor positioning

Ø About 150 publications, 2 books / monographs

Ø 7000 citations according to google scholar

Ø Recent focus on connected vehicles and Big Data Applications, AI
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Big Data for Vehicle Data Analysis

• Big Data for connected vehicle applications
• Vehicles generate enormous amount of data
• Where to process? In-vehicle, edge and cloud

• Use case driving behavior & energy efficiency
• Compute efficiency for every second
• Comparison of Big Data processing options

• Use case driver status monitoring
• Privacy preserving data analysis with federated learning

• Discussion and Outlook
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Motivation – Big Data and Data Analysis in Automotive
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Vehicle Driving Data Applications:
e.g. insurance, eco driving,

predictive maintenance,
ADAS / AD optimization,…

2TB/day from 
internal 
CAN bus

Vehicle Sensor 
Data:

2 TB/hour
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Applications of Connected Vehicles

• Enhancing in-vehicle functions

• Routing and traffic data
• Energy efficient driving

• Enhanced autonomous driving functions

• New services

• Insurance based on actual driving

• Car sharing

• In-car payment (fuel, …)

• Management

• Predictive maintenance

• SW / function updates
5

Connected Car Cloud

Edge Computing

Source: pixabay
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IoT – Edge – Cloud Overview

Edge Computing: 
• Local computing
• Faster response 

possible (wrt cloud)
• Local data only

Vehicles & IoT
• Lots of sensors & 

actuators
• Limited computing,

cooling needed

Cloud computing
• Fully managed HW / SW,

reliability, security
• Economies of scale reg.

HW/energy/maintenance/
utilization
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Example: Harsh breaking 

• Find out breaking phases based on speed and acceleration

• Hard brake: deceleration is greater than a certain threshold ….
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Harsh breaking example 
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Use Case: Energy Efficiency 
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• Public data set (>500 trips, 8000km), incl.

• Location
• Speed

• Energy consumption

• Air conditioning, heating

• Vehicle information (weight), …

• Calculate „needed energy“ 

• VSP: Vehicle specific power

• Need road inclination
(from GPS coordinates), 
acceleration etc

https://github.com/gsoh/VED/
blob/master/README.md
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Use Case: Comparing Used and Needed Energy

Driving data for e-vehicles 

- Speed

- Uphill/downhill

- Vehicle weight
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Calculate needed energy: VSP 
(Vehicle Specific Power)

Simplified version

VSP ≈ v ∙ [a ∙ 1.1 + 9.81 ∙ grade + 0.213 ] + 0.000426∙v3

Vehicle energy consumption

- KWh from e-vehicle data
- Consider AC and heating

- Temperature, Battery SOC

Compare needed vs actual energy

- Energy efficiency calculation
- different driving phases

- Energy in different temperatures
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Use Case: Energy Efficiency Analysis
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Data Set from E-Vehicles
>500 trips, 8000km 

Needed vs used Energy
• Calculate physically

energy needed for
movement, „VSP“

• Compare VSP to actual
power consumption, for
every second

• Evaluation with Apache 
Spark, batch processing

VSP (Vehicle specific power)
Actual power

Speed

Altitude
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Example in more detail: VSP vs Actual Power 
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Gaps can
indicate

inefficiencies or
issues

Po
w

er
 (

kW
)

More Details:
Prehofer, C., & Mehmood, S. (2020, December). Big data architectures for vehicle data
analysis. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 3404-
3412). IEEE.

Time (s)
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E-Vehicle Data with Uphill/Downhill  
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Issues with
altitude due to

slow GPS 
receiver*

*Note: Altitute is computed
from GPS coordinates by

external website

Example points
to investigate

Example points
to investigate
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E-Vehicle Energy Consumption wrt Temperature
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• Compute ratio between power and VSP for each a full trip

• Aggregation of 370 trips into temperature bins, total 4731 miles
• Clearly shows efficiency loss for colder temperatures
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Data Stream processing (for same use case)

Apache Flink Stream processing
• Apache Flink as the true streaming processing engine 
• The core of Flink is streams and transformations on dataflows

• Many APIs, incl DataStream and SQL 

• Note: Apache Flink mainly designed for online stream processing, Spark for batch.
• Spark can do stream processing (with micro-batches), Flink can do batch
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Storage
Apache Flink

Worker/Tasks Worker/Tasks…
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Data Stream processing

Apache Spark Big Data processing

• The core of Spark is generalized 
“map reduce”

• Functions operating on 
Dataframes, highly parallel

• High-level APIs, incl SQL and 
window operations
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Apache Spark, Cluster MangerData
base Worker Worker…

Data
base

Spark Flink

Guarantee Exactly once Exactly once

Latency High Very Low

Throughput High High
Computation 

model
Micro-batch Streaming

Overhead of 
fault tolerance

Low Low

https://www.ververica.com/blog/high-throughput-low-latency-
and-exactly-once-stream-processing-with-apache-flink

https://www.ververica.com/blog/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink
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Apache Spark Scalability on Similar Use Case

Intel XeonW, 
8 Core 3.7GHz,
server

Intel i3, 2 Core,
1.7 Ghz laptop

• Implemented with Spark SQL APIs

• Extensive use of 
window operations

• Stand alone mode

• Graph shows 
computing time in s

More details:
Mohyuddin, S., & Prehofer, C. (2021, February). A Scalable
Data Analytics Framework for Connected Vehicles Using
Apache Spark. In 2021 International Symposium on 
Electrical, Electronics and Information Engineering (pp. 
322-329).
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Apache Flink Performance on Use Case

• Using Flink DataStream API

• Expressive window operations
• Stand alone mode
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Intel XeonW, 
8 Core 3.7GHz

Intel i3, 2 Core Intel XeonW, 
8 Core 3.7GHz,
server

Intel i3, 2 Core,
1.7 Ghz laptop
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Spark and Flink Throughput for Vehicle Data Use Case
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Throughput for 
Vehicle Data Use Case

Spark Flink

Intel i3, 2 Core 
1.7GHz 

0,35MB/s 3−4MB/s 

Intel XeonW, 8 Core 
3.7GHz

3 MB/s 9−12MB/s

Notes:

• Performance can depend significantly on use case and selected APIs
• Flink has powerful window operations in DataStream APIs

• For Spark, we had to use SQL APIs

• Includes complete execution, incl startup
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Data Stream Processing with Apache Flink

• Apache Flink as the streaming processing engine 
• The core of Flink is streams and transformations on dataflows

• Many APIs, incl DataStream and SQL 

21

Data
base

Apache Flink

Worker/Tasks Worker/Tasks…
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Performance Comparisons: Vehicle data streams
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Scenario 1 Scenario 2

Workstation, Intel 
Xeon W 3.7GHz,
8 Core,
3000 Euro

Number of Vehicle
data streams

45k 60k

Avgerage Latency range 
(ms)

1000 to 1800 1000 to 1800

Raspberry Pi 4b, 
ARM 7, 
1.5 GHz, 
4 Cores, 
70 Euro

Number of Vehicles 12k 8k

Avgerage Latency range 
(ms)

1000 to 2500 1000 to 3000
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Distributed Processing with Apache Flink - Distributed
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Driving Behavior
&

Power Efficiency

Data 
Preparation

Scenario 2, distributed with 2 devices: Using two Flink engines/clusters

Data
base

Data Collection 
(e.g. Apache 

Kafka)

Flink cluster,
Kafka Broker &      
Zookeper

Flink cluster,
Kafka client
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Evaluation: Performance on Distributed System 

24

Scenario 2,
Distributed

Intel NUC
Core i5, 2 Core

2.2GHz

Raspberry Pi 4b, 
ARM 7, 4 Cores

1.5 GHz 
Maximum number of 
vehicle data streams

30k 30k

Throughput 6MB/s -9MB/s 6MB/s -9MB/s

Average Latency range (ms) 1000 to 1300 0 to 1200
CPU Utilization % 40% to 70% 60% to 90%

Driving Behavior
&

Power Efficiency

Data 
Preparation

Promising 
results for
2 Pi 4b‘s!
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Big Data for Vehicle Data Analysis

• Big Data for connected vehicle applications
• Vehicles generate enormous amount of data
• Where to process? In-vehicle, edge and cloud

• Use case driving behavior & energy efficiency
• Compute efficiency for every second
• Comparison of Big Data processing options

• Use case driver status monitoring
• Privacy preserving data analysis with federated learning

• Discussion and Outlook
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Federated Learning Overview

1. Learning with local data in cars to create local model

2. Models are merged from different vehicles/drivers (no image data upload!)

1. Exchange only NN parameters

3.Improves privacy + data volume

2) Combining models
to improved model

Local
NN Learning

Local
NN Learning

Local
NN Learning

Combined NN 
Model

Local 
data

Local 
data

Local 
data

NN parameter
upload & 

aggregation

1) Learning of local 
model with
local data
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Input Data: NTHU Dataset

• 36 people of different genders and ethnicities

• Total 9 and a half hours
(varying length videos)

• Annotated per frame 
(Eye, Mouth, Head, Drowsiness)

• Train, Val, Test Split (after preprocessing):

[Weng et al., “Driver Drowsiness Detection via a Hierarchical Temporal Deep Belief Network.”]
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Federated Learning for Driver Drowsiness detection

● Use case of driver drowsiness detection
● Detection Method:

○Using Driver’s Behavioral measurements (eyes. mouth, head etc.) non-intrusive
■Datasets used: NTHU DDD, others, e.g. DROZY, UTA-RLDD

■Features
■PERCLOS: PERcentage of eye CLOSure

■FOM: Frequency of Mouth Open

Further Details: 
Zafar, A., Prehofer, C., & Cheng, C. H. (2021, September). Federated
Learning for Driver Status Monitoring. In 2021 IEEE International Intelligent 
Transportation Systems Conference (ITSC) (pp. 1463-1469). IEEE.
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FL: Our Setup 

➔ Hyperparameter Selection

◆K: Total number of clients used in 
the process = 18

◆C: Fraction of clients used at each 
iteration = 2

◆Data Sampling

Local dataset at each round: 4 video
sequences for varying lengths for a set
based on external factors. e.g. night
time videos where the driver is wearing
glasses

The 4 videos have different facial actions
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Baseline Model Architecture

[Savas et al., “Real Time Driver Fatigue Detection System Based on Multi-Task ConNN.”,
Zhuang et al. “Driver Fatigue Detection Method Based on Eye States With Pupil and Iris Segmentation”]

Frequency range: All frames in video
Threshold values:

PERCLOS bounded at 20 %
FOM bounded at 16 %
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Baseline Model Architecture: Stage 1

CEeye: Binary Cross-Entropy Loss
CEmouth: Sparse Categorical Cross-
Entropy Loss
Total Loss:

Cross-Entropy Loss
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Baseline Model Arch: Loss

Experiment: initial learning rate: 1e −2 (0.01), lr decay: 0.001, momentum: 0.99, batchsize: 
64, epochs: 20, batchNorm on conv layers + dropout rate (20%) on fc layers
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Baseline Model Arch: Final

Experiment: initial learning rate: 1e −2 (0.01), lr decay:  0.001, 
momentum: 0.99, batchsize: 64, epochs: 20, batchNorm on conv
layers + dropout rate (20%) on fc layers

~ 65 %
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FL: FedAvg and DynAvg

Training loss from our experiment (∆ = 0.5) shows no improvement with non-IID data

1. Federated Averaging: averaging of all   
parameters

2. Dynamic Averaging: significant
parameter changes updated only

Challenges with highly non-IID data set!

[Kamp  et al., “Efficient Decentralized Deep Learning by Dynamic Model Averaging”]
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FL: how much to aggregate from local updates

Training loss from our experiment ( µ = 0.01 ) shows improvement 

Promising Approach: FedProx
Regularization of loss function in 
local objectives to control
divergence

Permit some local deviation from
central model

[Li  et al., ““Federated Optimization in Heterogeneous Networks”]



Christian Prehofer, Denso Europe R&D

© DENSO CORPORATION All RightsReserved.

Results: Comparing baseline vs FedProx

Predictive performance

Test Accuracy for baseline model (65%) and federated model (62%) for Eye Class

New results with >80% accuracy in our
labs. Needed more and high-quality data
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Big Data for Vehicle Data Analysis

• Big Data for connected vehicle applications
• Vehicles generate enormous amount of data
• Where to process? In-vehicle, edge and cloud

• Use case driving behavior & energy efficiency
• Compute efficiency for every second
• Comparison of Big Data processing options

• Use case driver status monitoring
• Privacy preserving data analysis with federated learning

• Discussion and Outlook
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Challenges in Data Science, based on 2017 Kaggle Survey

38https://www.kaggle.com/ash316/
novice-to-grandmaster
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Big Data and Vehicle Data Analysis
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Applications for vehicle data with different requirements
• Need to understand what data is needed, as well as timing requirements 
• Computing in car, in cloud or in the edge

Compared the architecture options in vehicular systems, 
• Trade-off computing power vs networking vs energy 
• Need to consider application development and operation

Performance and scalability of Big Data solutions
• Apache Flink scales down to small machines (4 cores)
• Distributed Big Data processing can be highly efficient

Thanks to Shafqat Mehmood, Atiqa Zafar, Shumail Mohyuddin, Chih-Hong Chen, William Lindskog

Privacy-aware distributed AI with federated learning
• Promising first result on FedProx, currently ongoing work
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Vehicle Energy Dataset (VED)
• About 8000 km of driving data with e-vehicles

• Detailed data with 1s sample time for speed, energy

Reference: https://arxiv.org/abs/1905.02081


