DENSO Crafting the Core

Challenges of Big Data, Artificial Intelligence and Vehicle Data

April 2022 Christian Prehofer

Presenter: Dr. Christian Prehofer

- > 15+ years industry experience in telecom, Internet and automotive
 > Currently working at hdmi is
- > 10+ years experience in university and applied research labs
 - Lecturer at TU München, supervised multiple PhDs
 - > One successful startup on indoor positioning
- About 150 publications, 2 books / monographs
 - > 7000 citations according to google scholar
- Recent focus on connected vehicles and Big Data Applications, AI

Big Data for Vehicle Data Analysis

- Big Data for connected vehicle applications
 - Vehicles generate enormous amount of data
 - Where to process? In-vehicle, edge and cloud
- Use case driving behavior & energy efficiency
 - Compute efficiency for every second
 - **Comparison** of Big Data processing options
- Use case driver status monitoring
 - Privacy preserving data analysis with federated learning
- Discussion and Outlook

Motivation – Big Data and Data Analysis in Automotive

Vehicle Driving Data Applications: e.g. insurance, eco driving, predictive maintenance, ADAS / AD optimization,...

Christian Prehofer, Denso Europe R&D

Applications of Connected Vehicles

- Enhancing in-vehicle functions
 - Routing and traffic data
 - Energy efficient driving
 - Enhanced autonomous driving functions
- New services
 - Insurance based on actual driving
 - Car sharing
 - In-car payment (fuel, ...)
- Management
 - Predictive maintenance
 - SW / function updates

Christian Prehofer, Denso Europe R&D

IoT – Edge – Cloud Overview

Vehicles & IoT

- Lots of sensors & actuators
- Limited computing, cooling needed

Edge Computing:

- Local computing
- Faster response possible (wrt cloud)
- Local data only

Cloud computing

- Fully managed HW / SW, reliability, security
- Economies of scale reg. HW/energy/maintenance/ utilization

Big Data for Vehicle Data Analysis

- Big Data for connected vehicle applications
 - Vehicles generate enormous amount of data
 - Where to process? In-vehicle, edge and cloud
- Use case driving behavior & energy efficiency
 - Compute efficiency for every second
 - **Comparison** of Big Data processing options

Use case driver status monitoring

- Privacy preserving data analysis with federated learning
- Discussion and Outlook

Example: Harsh breaking

- Find out breaking phases based on speed and acceleration
- Hard brake: deceleration is greater than a certain threshold

Use Case: Energy Efficiency

- Public data set (>500 trips, 8000km), incl.
 - Location
 - Speed
 - Energy consumption
 - Air conditioning, heating
 - Vehicle information (weight), ...
- Calculate "needed energy"
 - VSP: Vehicle specific power
 - Need road inclination (from GPS coordinates), acceleration etc

https://github.com/gsoh/VED/ blob/master/README.md

Use Case: Comparing Used and Needed Energy

Vehicle energy consumption

- KWh from e-vehicle data
- Consider AC and heating
- Temperature, Battery SOC

Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved.

Compare needed vs actual energy

- Energy efficiency calculation
 - different driving phases
- Energy in different temperatures

Use Case: Energy Efficiency Analysis

Data Set from E-Vehicles >500 trips, 8000km

Needed vs used Energy

- Calculate physically energy needed for movement, "VSP"
- Compare VSP to actual power consumption, for every second
- Evaluation with Apache
 Spark, batch processing

Time (s)

Example in more detail: VSP vs Actual Power

Christian Prehofer, Denso Europe R&D

E-Vehicle Data with Uphill/Downhill

veh_trip_id v	total_time ~	total_power_kW ~	total_VSP ~	Correlation(Power,VSP) ~	max_Temp °C ~	min_Temp °C ~	total_airConPow_kW ~	total_heaterPow_kW ~	POW:VSP ~	≡
455_1720	1710.0	10476.059412500792	9865.72836081531	0.9481279556012671	15.0	13.5	0.0	0.0	1.0618637600148808	*
1										A

E-Vehicle Energy Consumption wrt Temperature

- Compute ratio between power and VSP for each a full trip
- Aggregation of 370 trips into temperature bins, total 4731 miles
- Clearly shows efficiency loss for colder temperatures

Christian Prehofer, Denso Europe R&D

Data Stream processing (for same use case)

Apache Flink Stream processing

- Apache Flink as the true streaming processing engine
- The core of Flink is streams and transformations on dataflows
 - Many APIs, incl DataStream and SQL
- Note: Apache Flink mainly designed for online stream processing, Spark for batch.
 - Spark can do stream processing (with micro-batches), Flink can do batch

Data Stream processing

Apache Spark Big Data processing

- The core of Spark is generalized "map reduce"
- Functions operating on Dataframes, highly parallel
- High-level APIs, incl SQL and window operations

	Spark	Flink		
Guarantee	Exactly once	Exactly once		
Latency	High	Very Low		
Throughput	High	High		
Computation model	Micro-batch	Streaming		
Overhead of fault tolerance	Low	Low		

https://www.ververica.com/blog/high-throughput-low-latencyand-exactly-once-stream-processing-with-apache-flink

Christian Prehofer, Denso Europe R&D

Apache Spark Scalability on Similar Use Case

- Implemented with Spark SQL APIs
- Extensive use of window operations
- Stand alone mode
- Graph shows computing time in s

More details:

Mohyuddin, S., & Prehofer, C. (2021, February). A Scalable Data Analytics Framework for Connected Vehicles Using Apache Spark. In *2021 International Symposium on Electrical, Electronics and Information Engineering* (pp. 322-329).

Christian Prehofer, Denso Europe R&D

Apache Flink Performance on Use Case

- Using Flink DataStream API
 - Expressive window operations
- Stand alone mode

Spark and Flink Throughput for Vehicle Data Use Case

Throughput for Vehicle Data Use Case	Spark	Flink
Intel i3, 2 Core 1.7GHz	0,35MB/s	3-4MB/s
Intel XeonW, 8 Core 3.7GHz	3 MB/s	9-12MB/s

Notes:

- **Performance** can depend significantly on use case and **selected APIs**
 - Flink has powerful window operations in DataStream APIs
 - For Spark, we had to use SQL APIs
- Includes complete execution, incl startup

Christian Prehofer, Denso Europe R&D

Data Stream Processing with Apache Flink

- Apache Flink as the streaming processing engine
- The core of Flink is streams and transformations on dataflows
 - Many APIs, incl DataStream and SQL

Christian Prehofer, Denso Europe R&D

Performance Comparisons: Vehicle data streams

			Scenario 1	Scenario 2
	Workstation, Intel Xeon W 3.7GHz,	Number of Vehicle data streams	45k	60k
	3000 Euro	Avgerage Latency range (ms)	1000 to 1800	1000 to 1800
	Raspberry Pi 4b,	Number of Vehicles	12k	8k
	1.5 GHz, 4 Cores, 70 Euro	Avgerage Latency range (ms)	1000 to 2500	1000 to 3000

Distributed Processing with Apache Flink - Distributed

Scenario 2, distributed with 2 devices: Using two Flink engines/clusters

Christian Prehofer, Denso Europe R&D

Evaluation: Performance on Distributed System

Scenario 2, Distributed	Intel NUC Core i5, 2 Core 2.2GHz	Raspberry Pi 4b, ARM 7, 4 Cores 1.5 GHz		
Maximum number of vehicle data streams	30k	30k		
Throughput	6MB/s -9MB/s	6MB/s -9MB/s		
Average Latency range (ms)	1000 to 1300	0 to 1200		
CPU Utilization %	40% to 70%	60% to 90%		

Big Data for Vehicle Data Analysis

- Big Data for connected vehicle applications
 - Vehicles generate enormous amount of data
 - Where to process? In-vehicle, edge and cloud
- Use case driving behavior & energy efficiency
 - Compute efficiency for every second
 - **Comparison** of Big Data processing options

Use case driver status monitoring

- Privacy preserving data analysis with federated learning
- Discussion and Outlook

Federated Learning Overview

- 1. Learning with local data in cars to create local model
- 2. Models are merged from different vehicles/drivers (no image data upload!)
 - 1. Exchange only NN parameters

3. Improves privacy + data volume

DENSO Crafting the Core

Christian Prehofer, Denso Europe R&D

Input Data: NTHU Dataset

- 36 people of different genders and ethnicities
- Total 9 and a half hours (varying length videos)
- Annotated per frame (Eye, Mouth, Head, Drowsiness)
- Train, Val, Test Split (after preprocessing):

*	Training	Validation	Test
Number of Subject	18	4	14
Number of annotations (per-frame)	537,245	145,049	596,590
Number of Videos	288	16	56

[Weng et al., "Driver Drowsiness Detection via a Hierarchical Temporal Deep Belief Network."]

Christian Prehofer, Denso Europe R&D

Federated Learning for Driver Drowsiness detection

• Use case of driver drowsiness detection

- Detection Method:
 - Our Object of the second state of the secon
 - ■Datasets used: **NTHU DDD**, others, e.g. DROZY, UTA-RLDD
 - Features
 - ■PERCLOS: PERcentage of eye CLOSure
 - ■FOM: Frequency of Mouth Open

Further Details:

Zafar, A., Prehofer, C., & Cheng, C. H. (2021, September). Federated Learning for Driver Status Monitoring. In *2021 IEEE International Intelligent Transportation Systems Conference (ITSC)* (pp. 1463-1469). IEEE.

Christian Prehofer, Denso Europe R&D

FL: Our Setup

→ Hyperparameter Selection

•K: Total number of clients used the process = 18

\diamondC: Fraction of clients used at ea iteration = 2

◆Data Sampling

Local dataset at each round: 4 video sequences for varying lengths for a set based on external factors. e.g. night time videos where the driver is wearing glasses

The 4 videos have different facial actions

Christian Prehofer, Denso Europe R&D

Baseline Model Architecture

PERCLOS = Nclose / Ntotal * 100

FOM = Nopen/Ntotal * 100

Frequency range: All frames in video Threshold values:

PERCLOS bounded at 20 % FOM bounded at 16 %

Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved. [Savas et al., "Real Time Driver Fatigue Detection System Based on Multi-Task ConNN.", Zhuang et al. "Driver Fatigue Detection Method Based on Eye States With Pupil and Iris Segmentation"]

Baseline Model Architecture: Stage 1

Input (320 x 240)

CONV 1 (6 x 316 x 236, kernel: 5x5)

POOL 1 (maxpool: 2 x 2)

CONV 2 (8 x 154 x 114, kernel: 5x5)

POOL 2 (maxpool: 2 x 2)

CONV 3 (10 x 74 x 54, kernel: 4x4)

POOL 3 (maxpool: 2 x 2)

FLATTEN (9990)FC (128)FC (128)Output (1, Sigmoid)Output (3, Softmax)

Cross-Entropy Loss

$$- rac{1}{N} \sum_{n=1}^{N} \; \left[y_n \log {\hat y}_n + (1-y_n) \log (1-{\hat y}_n)
ight] \; ,$$

CEeye: Binary Cross-Entropy Loss *CEmouth*: Sparse Categorical Cross-Entropy Loss *Total Loss*:

 $L(y^{\wedge}, y) = CEeye + CEmouth$

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Christian Prehofer, Denso Europe R&D

Baseline Model Arch: Loss

Experiment: initial learning rate: 1e - 2 (0.01), lr decay: 0.001, momentum: 0.99, batchsize: 64, epochs: 20, batchNorm on conv layers + dropout rate (20%) on fc layers

Christian Prehofer, Denso Europe R&D

Baseline Model Arch: Final

Experiment: initial learning rate: 1e - 2 (0.01), lr decay: 0.001, momentum: 0.99, batchsize: 64, epochs: 20, batchNorm on conv layers + dropout rate (20%) on fc layers

Christian Prehofer, Denso Europe R&D

FL: FedAvg and DynAvg

Training loss from our experiment ($\Delta = 0.5$) shows no improvement with non-IID data

© DENSO CORPORATION All Rights Reserved.

[Kamp et al., "Efficient Decentralized Deep Learning by Dynamic Model Averaging"]

FL: how much to aggregate from local updates

Training loss from our experiment ($\mu = 0.01$) shows improvement

Christian Prehofer, Denso Europe R&D

© DENSO CORPORATION All Rights Reserved.

[Li et al., ""Federated Optimization in Heterogeneous Networks"]

Results: Comparing baseline vs FedProx

New results with >80% accuracy in our labs. Needed more and high-quality data

Predictive performance

Test Accuracy for baseline model (65%) and federated model (62%) for Eye Class

Christian Prehofer, Denso Europe R&D

Big Data for Vehicle Data Analysis

- Big Data for connected vehicle applications
 - Vehicles generate enormous amount of data
 - Where to process? In-vehicle, edge and cloud
- Use case driving behavior & energy efficiency
 - Compute efficiency for every second
 - **Comparison** of Big Data processing options
- Use case driver status monitoring
 - Privacy preserving data analysis with federated learning
- Discussion and Outlook

Christian Prehofer, Denso Europe R&D

Challenges in Data Science, based on 2017 Kaggle Survey

© DENSO CORPORATION All Rights Reserved

Crafting the Core

Christian Prehofer, Denso Europe R&D

https://www.kaggle.com/ash316/ novice-to-grandmaster

Big Data and Vehicle Data Analysis

Applications for vehicle data with **different requirements**

- Need to understand what data is needed, as well as timing requirements
- Computing in car, in cloud or in the edge

Compared the architecture options in vehicular systems,

- Trade-off computing power vs networking vs energy
- Need to consider application development and operation

Performance and scalability of Big Data solutions

- Apache Flink scales down to small machines (4 cores)
- Distributed Big Data processing can be highly efficient

Privacy-aware distributed AI with federated learning

• Promising first result on FedProx, currently ongoing work

Thanks to Shafqat Mehmood, Atiqa Zafar, Shumail Mohyuddin, Chih-Hong Chen, William Lindskog

Vehicle Energy Dataset (VED)

- About 8000 km of driving data with e-vehicles
 - Detailed data with 1s sample time for speed, energy

Data Name			Populated %				Sampling Time		
			ICE Vehicle & HEV		PHEV		EV		F8
GPS	Latitude / Longitude (deg)		100 %		100 %		100 %		3 sec
	Vehicle Spe	ed (km/h)	100 %		100 %		100 %		1 sec
Engine RPM (rev/min)		99.98 %		100 %		0 %		2 sec	
Engine Info	Fuel Info	Mass Air Flow (g/s) Fuel Rate (L/h) Absolute Load (%)	100 %	80 % 0.3 % 83.9 %	100 %	50 % 50 % 0 %	0 %	$\begin{array}{ccc} 0 \ \% \\ 0 \ \% \\ 0 \ \% \end{array}$	2 sec 5 sec 5 sec
	Short Term Fuel Trim B1 (%) Short Term Fuel Trim B2 (%) Long Term Fuel Trim B1 (%) Long Term Fuel Trim B2 (%)		89.2 % 33.0 % 79.8 % 23.8 %		$\begin{array}{c} 15.1 \ \% \\ 0 \ \% \\ 15.1 \ \% \\ 0 \ \% \end{array}$		0 % 0 % 0 % 0 %		5 sec 5 sec 30 sec 30 sec
	Outside Air Temperature (°C)		43.6 %		100 %		100 %		60 sec
Auxiliary Power (HVAC)	AirCon Power (KW) AirCon Power (W) Heater Power (W)		$\begin{array}{c cccccc} 0 \% & & 0 \% \\ 0 \% & & 0 \% \\ 0 \% & & \end{array}$		100 % 19.4	50 % 50 % 4 %	100 % 100	100 % 0 %	60 sec
Battery Info	Battery SOC (%) Battery Voltage (V) Battery Current (A)		0 0 0	% % %	100 100 100	% % %	100 100 100) %) %	60 sec 5 sec 1 sec

 TABLE II

 CONTENTS OF TIME-STAMPED DYNAMIC DATA

Christian Prehofer, Denso Europe R&D

Reference: https://arxiv.org/abs/1905.02081