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Introduction and Motivation

" Device-to-Device communication (D2D) 1is considered a key enabling
technology for Ultra-Reliable Low-Latency Communication (URLLC).

= Achieving ultra-high reliability and ultra-low latency pose challenges in terms of
bandwidth requirements

= The scarcity of radio resources and the limitations on the available system
bandwidth makes spectrum sharing a necessity for D2D implementation of
machine-type communication (MTC) targeting factory automation

= Radio Resource Management (RRM) schemes need to be efficiently designed

for interference management and coordination while guaranteeing tight
URLLC (QoS/QoE) demands



The Different RRM Approaches

* Centralised approach: requires global information gathering by base
stations often results in a high signalling overhead and increased
complexity, thus making it impractical for ultra-dense networks.

" Distributed approach: terminal-centric and supports self-organisation;
therefore reducing the amount of information gathering and processing by
base stations, but may also increase signalling overheads due to the high
amount of information interchange among devices.

= Hybrid approach: combines centralised and distributed approaches in
allocating resources among devices with a trade-off between
performance, signalling overhead and complexity.



Aim and Objectives

= Aim: To maximise the overall system throughput while satisfying the QoS requirements
of the cellular users (CUESs), ¢; and D2D users (DUESs), d;.

Max Ty = Wi(Aj(Zq ec1082(1+To) + Zg cplog2(1 +Tg)) - (1)

]

subject to:
A, —Temn=0 Vg EC (CUE SINR)
Pr(ly > lyma) <1—%; ¥d;€D  (DUE reliability and latency )
2gech =1 vd; €D (Channel association)
Ygepdj <1 v¢ €EC

= Objectives: To determine the achieved throughput



Methodology: Stateless Reinforcement Learning

* In Q-learning, at each time slot ¢, a DUE, observes a state s* and takes an action a®

from the action space, (i.e., select an RB k;), according to the policy . The Q-value 1s
updated as follows:
0t(stad) + o [rt + 1 n}ﬁXQt(StHJatﬂ) —Qt(s, at)]

Qt+1 — ¢

if s =st, a=a

Qi(st,at),  otherwise
* For our work, the action a; € A taken by an agent will result in the end of an episode
i.e., states 0 and 1 are terminal states, where Sg}j (t) = 1is the goal state of the DUEs.

* An agent can choose its action based solely on 1ts Q-value and the updated Q-value of
the chosen action 1s based on the current Q-value and the immediate reward from
selecting that action.



Methodology: Stateless Reinforcement Learning

= The learning environment can be modelled entirely using a stateless Q-learning 1.e.,
action-reward only since the state transition is not required.. The update function is re-
formulated as follows:

0t(at) + a[r(a?) — Qt(a))],if a = at
Qt(ab), otherwise

r(at) is the immediate reward of selecting a

Qt*+1(at) =

* The performance requirements of the CUEs are considered by adopting a scheme in
which the base station keeps a look-up table of the ith CUE based on the actions on the
DUESs, rather than the BS exchange the measured CUE SINR with the DUEs for every
action a® taken at each time slot as done in other works. Therefore reducing the signalling
overheads.



Methodology

Base Station Assisted (BSA) Reinforcement Learning

The jth DUE only gets a reward when the mmimum QoS demands are met while ith CUE

gets a reward 1f its mmimum SINR 1s satisfied at each time slot for the action taken by jth
DUE.

For the BSA method, after the training phase, each DUE loads its Q-value table, to the BS
for centralised matching.

The BS will allocate cellular RB to D2D links in such a way that spectrum sharing is
optimised and network throughput is maximised.

There 1s no need for information exchange between the UEs to find a preferred candidate.



Algorithm Details (1/2)

Distributed Training of DUFs

else

Select action a;=argmax Qu, (a)
aeA

1 Initialise the action-value function for the DUEs 11 Evaluate {y, Iy, and Iy, of d; € D for the action a'
[de(a) = 0|de(a) = Qéj(at) Q=12 '"’NI vdep 12 Measure the SINR, .., of CUE ¢; € € for the action

2: Initialise the action-value function for the BS for the actions of a' taken by d; € D

the jth DUE on the ith RB 13 Observe immediate reward of d; € D and ¢; € C,

[QC_(Q) =0|0..(a) = Qg‘ @), j=12, ...,M] e €C 14 Update action-value for action of dj € D on the ith RB

3 ford €D 1<) <M do 0i(@) = Qi (@) + 0|y, (@) + Q3 (@)

4 while not convergedo 15: Update action-value for ¢; € C for action a of jth DUE

5: g.eneratearandom number x € {0,1} 0/ (@) =0/ (@) + U[Tci (@) +¢’ (a)]

6: if x < ¢ then b l l

7 Select action a; randomly 16 end while

g : 17: end for

9

10: end



Algorithm Details (2/2)

Centralised Channel Allocation

18: Load de.(a) to the BS vd; €D
19:ford; €D 1<j<M do

20:  Obtain Q(a) = {04 (a).Q4(a)} i=12,...N
211 Q(a) € Q(a)| {04 (a), 0} (@)} € R*, where R*

positive real number
22: Qror = Q4,(@) +Q/(a)  ¥qeQ(a)
23: end for
24: Set up a list for unmatched DUE I, = {dj: vd; € Du}
25: while D, # © do
26:  Rank D, in increasing order of |0 Q(a)|
27:  Start DUE d; € D,;: Q(a) # @ with the least | Q(a)|

28: ¢; = max Qror
Ti ER

29: D, =D, —d;
30- Q(a) = Q(a)\¢} vdy € D #j
I31: end while

[a—




Results (1/2)
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Results (2/2)
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Conclusions and Directions for Future Work

A semi-distributed Base Station Assisted (BSA) scheme for Radio Resource Management
(RRM) of a network with D2D and cellular users, targeting wireless industrial scenarios was
presented.

The reinforcement learning based approach presented relies on distributed training of the D2D
agents. Subsequently, the look-up tables for the D2D agents are loaded to the base station for
centralised channel allocation.

Simulation results show that the throughput of the presented BSA approach is comparable to
traditional centralised optimisation and demonstrates an improved performance relative to the
deferred acceptance (DA) scheme.

The future work will focus on evaluating the trade-off between performance, complexity and
signalling overheads for the BSA algorithm relative to other techniques.
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