ANIMATING REAL-TIME FLUIDS IN COMPUTER GRAPHICS

DR. PRASHANT GOSWAMI

HIR. BTH.

ASSISTANT PROFESSOR BLEKINGE INSTITUTE OF TECHNOLOGY, SWEDEN **KEYNOTE – Infoware/Visual 2021**

https://prashantgos.github.io prashant.goswami@bth.se

BRIEF BIO

Ha. BTH

- Assistant Professor, BTH Sweden (Nov 2014 now)
- Postdoc, INRIA Grenoble (Aug 2013 Oct 2014)
- Research Fellow, NTU Singapore (Mar 2012 May 2013)
- PhD, University of Zurich (July 2007 Dec 2011)
 - Specialization
 - Computer graphics (CG)
 - Animating fluids water, clouds, snow
 - Processing and rendering large data sets
 - Geometric modeling
 - Artificial Intelligence in use of CG
 - Data science

INTRODUCTION

- Fluids ubiquitous in daily life
 - Computer games
 - Movies
 - Virtual simulations

Movies - Fluids

INTRODUCTION

• Focus differs

HR. BTH

- Movies Realism
- Games Efficiency

Games - Clouds

MOTIVATION

- Efficiency is very important
 - Smart methods, eg. Level-ofdetail (LOD)
 - **GPUs** have been around for long
 - Massively parallel
 - Artificial intelligence (AI)
 - Learns from data
- Many simulations can be real-time now!

PHYSICS ANIMATION MY INTERESTS

• Fluids

- Clouds
- Snow

FLUID SIMULATION

- Particle-based (Lagrangian)
 - Smoothed Particle Hydrodynamics (SPH)
 - More particles \rightarrow Better simulation
 - More particles \rightarrow Slower simulation
 - Need to accelerate SPH

TH. BTH

FLUID SIMULATION LEVEL-OF-DETAIL

- Variable particle sizes disrupt physics
 - LOD with uniform particles
- Simulation domains have inactive regions
 - Assign different computational effort to different regions

Time Adaptive Approximate SPH, Goswami, VRIPHYS (2011)

FLUID SIMULATION LEVEL-OF-DETAIL

- Determine various regions in the fluid simulation (every iteration)
 - Active DO ALL PHYSICS COMPUTATIONS
 - Passive SKIP ALL PHYSICS COMPUTATIONS
- Transition region
 - Semi-active SOME COMPUTATIONS
- We save computation on all passive particles with low activity

MOVIE LEVEL-OF-DETAIL

TEKNISK

BTH.

Particles: I million Speed-up: 7x

MOVIE LEVEL-OF-DETAIL

FLUID SIMULATION REGIONAL TIME STEPPING

- Alternate to Freezing Particles
- Different time steps to different particles
- Based on activity
 - Fast moving particles \rightarrow updated more frequently
 - Slow moving particles \rightarrow updated less frequently
- No particle is ever frozen

Regional Time Stepping for SPH, Goswami & Batty, Eurographics short (2014)

FLUID SIMULATION REGIONAL TIME STEPPING

- Block-based architecture for time step assignment
- CFL condition used

TH. BTH

Time steps by color: Δt , $2\Delta t$, $3\Delta t$

FLUID SIMULATION REGIONAL TIME STEPPING

- Move each particle at every iteration
- Compute force when required (Δt , $2\Delta t$, $3\Delta t$)
- Apply correction

HB. BTH

$$x_i^{n+1} = \tilde{x}_i^{n+1} + \frac{(a_i^{n+1} - a_i^n)\delta t^2}{6}$$
$$v_i^{n+1} = \tilde{v}_i^{n+1} + \frac{(a_i^{n+1} - a_i^n)\delta t}{2}$$

MOVIE REGIONAL TIME STEPPING

FLUID SIMULATION IISPH ON GPU

- Implicit Incompressible SPH
- Ported on GPU

Ha. BTH

 Nearly 6x faster than OpenMP

Implicit Incompressible SPH on the GPU, VRIPHYS (2015)

	Physics - GPU		Physics (OpenMP)	- CPU	
Particles	Time (ms)	FPS	Time (ms)	FPS	Speedup
7 600	2.58	388	6.89	146	2.67
20 000	4.06	247	22.18	45	5.47
54 000	10.21	100	64.20	16	6.29
103 000	21.07	49	126.80	8	6.02
175 000	39.18	28	221.16	5	5.64

PHYSICS ANIMATION MY INTERESTS

- Fluids
- Clouds
- Snow

CLOUDS

- Clouds are important in various domains
 - Atmospheric science
 - Computer graphics
- Various steps involved
 - Modeling
 - Rendering
 - Animation

A survey of modeling, rendering and animation of clouds in computer graphics, Goswami, Visual Computer, 2020

JUN ANTH A

IARIA

CLOUDS

- Cloud animation challenging
 - Detailed data storage
 - Cloud, surrounding air
 - Detailed computations
- Real-time performance was out of question!
 - Landscape-scale

About 500K-IM particles simulated on GPU Barbosa et al. 2015

- We proposed a hybrid model
 - Expensive Physics \rightarrow Macro level
 - Rendering \rightarrow Micro level
- Rendering is controlled using physics
- Particle-based approach
- Operates at interactive frame rates

Real-time landscape-size convective clouds simulation and rendering, Goswami & Neyret, VRIPHYS, 2017

- Macro physics units parcels
- Implicit environment
 - Temperature with height
 - Humidity with height
- Forces on parcel
 - Gravity, bouyancy, air drag, atmospheric, SPH
- Mixing with environment
 - Entrainment, detrainment
- Physics inexpensive -- computed on CPU

- Output from physics
 - Condensed fraction of water in each parcel (η)
- Visualization

TR. BTH

• Hypertexture dependent on η

Temperature Profile	Real time connection clouds cimulation							
10000 (m)	More-time contexture clouds simulation							
9000								
8000		Contraction of the						
7000								
6000								
5000		A CO Real	10 million (1990)					
4000	Section of the sectio							
3000	and the second							
2000			with FD	M normals		without F	FDM norn	nals
2000						, interio at 1		
-32 -25 -19 -12 -6 0 6 12 19 25 22		# parcels	physics	render	fps	physics	render	fps
Custom Editor					-	1.2		<u> </u>
H Cloud Editor		8	6%	89%	128	4%	78%	235
sharp 0,30 👘		1.4	601	000			0101	1.00
gain 1,00 0		14	6%	89%		6%	91%	160
HT Scale 2,00 💠		24	001	0701	24	001	0007	62
Histing Ratio 0,025 🐨		34	8%	8/%	24	8%	89%	03
Physics steps 400 +		85	0%	820%		00%	880%	21
Blowing Buoyancy Wind		05	970	0270	/	970	0070	
Mxing HyperTexture PlaneHT Distriction								
Reset								
				and the second second				

THENISKA HOCK

CLOUDS MOVIE

TEKNISK

BTH.

Less than 100 parcels

- Improvement to previous method
- With increasing number of parcels
 - Parcel physics grows expensive
 - Hypertexture generation becomes exponentially expensive
- Limited cloud shapes
- New method reduces parcel count significantly
- We still keep our hybrid approach of physics controlled proceduralism

Interactive animation of single-layer cumulus clouds using cloud map, Goswami, STAG, 2019

TH. BTH

- Obtain physics profile from a few parcels
- Project them onto a plane
- Use this planar texture to generate hypertexture

- I6 parcels employed
- Superimposing Physics profile on Noise profile
- Highly saves on
 - Sphere-ray intersection tests while generating hypertexture
 - Physics when using many parcels
- Allows better cloud shapes

Noise profile

Noise + Physics profile

PHYSICS ANIMATION MY INTERESTS

- Fluids
- Clouds
- Snow

SNOW

- My recent research interest
- Snow animation highly challenging
 - Complex physics
 - Various states (solid, powder, ...)
 - Bonds
 - Effect of temperature
- No prior real-time solution existed

SNOW

- Purely particle-based approach
- GPU-based
- Supports both animation and rendering in real times
 - Relatively large particle counts

Real-time particle-based snow simulation on the GPU, Goswami et al., EGPGV, 2019

SNOW

- Discretize snow into particles
 - Snow (r_s), Ice (r_i)
- Assign state to each particle based on radius
 - $\eta \rightarrow$ snow ratio, (1- η) \rightarrow ice ratio
 - Interpolate properties
 - $E = E_s * \eta + E_i * (1 \eta)$

 $\begin{array}{c} \underline{\text{Density :}}\\ \rho_s \rightarrow 100-800 \text{ kg/m}^3\\ \rho_i \rightarrow 800-900 \text{ kg/m}^3 \end{array}$

SNOW FORCES

$$\vec{F}_n = \begin{cases} -\frac{E_j r_j + E_k r_k}{2} \delta \vec{n} & \text{if } -\frac{E_j r_j + E_k r_k}{2} \delta < 4 \frac{\sigma_{nj} r_j^2 + \sigma_{nk} r_k^2}{2} \\ 0 \text{ and cohesion is broken, otherwise} \end{cases}$$

SNOW FORCES

HagenMuller et al. 2015

SNOW BONDS

- Bonds crucial to capture correct snow behavior
- Particles with broken bond do not enter cohesion
- Memory intensive expensive
- We introduce an approximation
 - Set a threshold on $\frac{n_{curr}}{n_{max}}$

No bonds broken Bonds broken

SNOW COMPRESSION

- Compression caused due to opposing forces
- Durability (d)

HB. BTH

• To account for trapped air

$$d \leftarrow \begin{cases} d - k_q p_c, & \text{if } \vec{F}_c > \vec{D}(\rho_i) \\ d & \text{otherwise} \end{cases}$$

Boundary particles mirror force

SNOW RESULTS

• CUDA, C++

TEKNISK

Ha. BTH.

• Some parameters modified

• 1	Dense show ree radias	0.020 m	
E_{snow}	Young modulus snow $100 kg/m^3$	$5000 Nm^{-2}$	
E_{ice}	Young modulus ice 900 kg/m^3	$35000 Nm^{-2}$	
Ø	Angle of repose	38°	

Frame rates

Particle count	Rendering-surface	Rendering-particles
8000	734	1023
20000	580	783
35937	430	607
75615	282	335
111000	230	268

SNOW MOVIE

1

PHYSICS ANIMATION MY INTERESTS

- Fluids
- Clouds
- Snow

