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1. Operational structure for transportation systems 
and signal control systems overview 

3 –Layered Structure for Transportation Systems 

❑ Mass 
flow

❑ Energy 
flow

Information flow

Available data: 
❑ Data from fixed sensors such as probe detector, intersection camera images
❑ Moving data such as the data provided by individual vehicles
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1.2 Intersection Control Basics

◼ Road Networks

◼ Junctions/Cameras

◼ Traffic Lights

Traffic flow distribution = smooth and energy savings 
as widely required objectives
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1.2 Intersection Control Basics

• Traffic Signal Design

– Ring and barrier diagram

• Conventional mode of traffic signal

– Pre-time

– Actuated

Source(USDOT: Traffic Signal Timing Manual)

Source(USDOT: Traffic Signal Design)

https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter5.htm#5.2
https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter4.htm


1.2 Intersection Control Basics – Pretimed Control    

Pretimed (Fixed) timing control 

• The duration and sequence of the phases “green” vs “red” and 
“yellow” are fixed regardless of the actual traffic conditions, 

• The actual timing and cycle are designed based upon historic 
traffic data in line with the traffic demand at different times of 
the day (TOD).

Disadvantage: An open loop control infrastructure that cannot 
cope with real-time variable traffic flow.

7



1.2 Intersection Control Basics – Adaptive Control    

Adaptive timing control 

“green” vs “red” and “yellow” signs 
cycle at road intersections are tuned 
adaptively using the measurements of 
the real-time approaching traffic flow 
near intersections

Advantage: Can cope with variable 
traffic conditions

Fig. 1 General framework on adaptive signal control 

systems (SCOOT)*
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*Hunt, P.B., Robertson, D.I., Bretherton, R.D. and Royle, M.C., 1982. The SCOOT on-line 
traffic signal optimisation technique. Traffic Engineering & Control, 23(4)
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Downtown Bellevue street network

• Grid road system

• 7 × 5, 35 intersections 

• 57 bi-directional road links

Traffic Data

• Provided by the City of Bellevue

• Road geometrics (e.g., length, number of lanes)

• Traffic count by movement at each intersection 
during midday off-peak period (1 – 2 PM) in 2017

(a) Traffic count data (b) Road network and traffic

volume

Example 1.  Adaptive LQR Control in Smart Mobility 1.0

Objective: Using green timing with fixed cycle to smooth traffic flows over the network
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Example 1. Adaptive LQR Control in Smart Mobility 1.0

• Objective: 

Using green timing with 

fixed cycle to smooth 

traffic flows over the 

network

• Control strategy: 

Adaptive Linear Quadratic 

Regulator (LQR) Control 

Strategy 

Publications: Two long papers in IEEE Transactions on Intelligent 
Transportation Systems, 2020
One Keynote talk at an International Conference, one IEEE Conf
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1.3 Advanced Traffic Signal Control – Connectivity via Communications

• Advanced traffic control with Connected and Autonomous Vehicles (CAVs)

– (1) Actuated traffic signal enhanced using CAVs data

▪ Estimate aggregated traffic measures (traffic volume, queue)

▪ Loop detector (inaccurate and limited spatially) + CAV data

▪ Light computation burden

▪ (Day and Bullock, 2016; Goodall et al., 2013)

– (2) Platoon-based signal control

• Group individual vehicles to platoons

• Allow the platoons to pass the intersections without severe interruptions

• Traffic prediction on mid-level traffic flow states (e.g., volume, arrival time of platoon)

• Light computation burden – group vehicle into platoons

• May generate sub-optimal signal plans due to the simplicity

• (He et al., 2012; Pandit et al., 2013)
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1.3 Advanced Traffic Signal Control – Connectivity via Communications

• Advanced traffic control with CAVs

– 3) Planning-based signal control

▪ Detailed trajectories of individual vehicle – better describe the real traffic conditions

▪ Predict trajectories and arrival time of each vehicle & predict traffic states in a
forward time horizon

▪ More accurate and complex

▪ (Li and Ban, 2018; Li and Ban 2020; Feng et al., 2015)

– 4) Transit priority control based on CAVs

▪ Multimodal traffic control → Special case of planning-based signal control

▪ Aims to reduce delay of public transit by phase extension/insertion

▪ May disrupt normal traffic progressions

▪ First-come-first-serve strategy to resolve conflicting requests

▪ (Zlatkovic et al., 2012; He, et al., 2014).



1.4 Traffic Flow Modelling at Intersections    

Plan to be controlled   

Input: Traffic signals (“green” vs “red” and “yellow” signs);

Output: Traffic flow represented by travel delays, queue length, 
etc;   

Modelling: Establish relationship between inputs and outputs
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1.4 Traffic Flow Modelling at Intersections

❑ First principle modelling       basic flow dynamics and balance 

❑ Data driven modelling         detector/camera data and machine 

learning to obtain the traffic flow models 

❑ Semi-physical modelling          Combination of the first principle

modelling with data driven modelling (Wang, 1997)*

*H. Wang and A. Afouxenidis, "A new approach for semi-physical modelling for unknown dynamic systems", Proc. of the IEEE 

Singapore,  International Symposium, 1997.
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1.4 Traffic Flow Model – Nonlinear and Stochastic Nature

Traffic flow can be modeled as stochastic distribution 

process using kinematic wave theory*, 

15

*Lighthill, M. J., G. B. Whitham. 1955. A 

theory of traffic flow on long crowded 

roads. Proc. Roy. Soc. A229 317–345.

Flow q and density k at 

a point in space x and 

time t, N: Vehicle count

Flow conservation 

equation

𝑤 𝑞, 𝑥 = 𝜕𝑘(𝑞, 𝑥)/𝜕𝑞

w(q, x): The average speed 

of a traffic stream/flow, w

Example of traffic flow, density, and speed relationship. (Image source: 

**Gentile, Guido. "The General Link Transmission Model for dynamic network 

loading and a comparison with the DUE algorithm." New developments in 

transport planning: advances in Dynamic Traffic Assignment 178 (2010): 153



1.4 Traffic Flow Model – Nonlinear and Stochastic Nature

◼ With control inputs as the distribution of the traffic lights (red – yellow –

green), the above model can be expressed as

◼ Systems are nonlinear and unknown

◼ Systems are subjected to random input noises, where control should be performed 

using neural networks and AI-approaches 
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2. Neural Network Based Approaches – Current Situation 
and Challenges  

This belongs to adaptive timing control – intelligent traffic signal control     

In forming intelligent  traffic signal control strategies, the following has 
been used:

❑ Fuzzy systems, 
❑ Artificial neural networks, 
❑ Evolutionary computing, 
❑ Swarm intelligence,  
❑ Reinforcement learning, and 
❑ Adaptive dynamic programming

17



1818

2.1 Fuzzy Logic - Fuzzy-Neuro for Traffic Signal Control

• Wei and Zhang (2002)

• Input : Queue length & # of vehicles on each approach

• Output: Proportion of vehicle passing through the stop line.

• Fuzzy NN:

• Layer 1: crisp input and output

• Layer 2: Trapezoidal membership function

• Layer 3: Rule layer

• Layer 4: Output-linguistic layer

• Gradient descent method to minimize error of y.
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2.1 Fuzzy Logic - Fuzzy-Neuro for Traffic Signal Control

• Urgent Degree of signal
phases: Fuzzy set in Fig. 4
provide analogy to human
characterization .

• Parameter a, b, c, d
describe Trapezoidal shape:
Fuzzy NN was used to
updated and optimize these
parameters.
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2.2 Reinforcement Learning for Traffic Signal Control

• Wei et al (2018)

• Reinforcement Learning:

• State: queue, # of vehicles, and waiting time of
each lane, vehicle position, current signal phase.

• Action: change the light to next phase or not.

• Reward: weighted sum of queue, delay, waiting
time, indicator of light switches, # of vehicle, and
travel time.

• Goal: Find an action that maximizes the long-
term reward:
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2.2 Reinforcement Learning for Traffic Signal Control

Q-network:

• Image features: learnt by two Convolutional NN
(CNN) layer

• Outputs of CNN concatenate with other features

• Queue

• Waiting time

• Signal phase

• # of vehicles

• All features are fed into a fully-connected NN

• Gate control learning process (by phase = 0 or 1)
map reward to action.
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2.2 Reinforcement Learning for Traffic Signal Control

Model Framework:

• Offline:

• Set a fixed timetable for the lights

• Let traffic go through the system to
collect data samples

• Online:

• Observe state s and take action a
according to 𝜖-greedy strategy combining
exploration and exploitation.

• Get reward r from the environment

• The tuple (s, a, r) will be stored into
memory
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2.3 Probabilistic Graph NNs for Traffic Signal Control - Coordination

• Zhong et al (2021)

• Objective: minimize travel time of all
approaches of all intersections

• Probabilistic graph NNs:

1) Graph attention NN module: learn
dependence and importance of
intersections

NN for embedding features:

Similarity coefficient between

neighboring intersection i and j:

Influence of all neighboring

intersections on intersection i:
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2.3 Probabilistic Graph NNs for Traffic Signal Control - Coordination

• Probabilistic graph NNs:

1) Graph attention NN

2) Graph inference module: learn
latent representation of
intersections considering the
uncertainty of traffic conditions.

3) Q-value prediction module

• State: queue, signal phase, # of
vehicles

• Action: select a phase

• Reward: Queue of approaching
lane minus pressure of
intersection
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2.4 Representative NN-based Traffic Signal Control Studies
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3. Some New Results - Hybrid Neural Network Modeling     

• Data from Econolite Platform

High resolution data available from the platform 
as shown in Fig 2.

• Neural Network Modeling

Use neural networks to model the dynamics of 
the intersections for travel delays and signal 
timing.  The following modeling exercises have 
been conducted since Feb 2021:

• Linear (intersection # 4)

• Neural Network (intersection # 4)

• Hybrid Neural Network 1 (intersection # 4)

• Hybrid Neural Network 2 (7 intersections)
Figure 2. Econolite data and intersectional controls
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Red clearance on, phase 1

Detector off, Detector id 37

timestamp
Event 
code

Event 
Param

Detector on, Detector id 37

Green on, phase 2

Green off, phase 5

Yellow on, phase 5

Red clearance off, phase 1

3. Some New Results - Hybrid Neural Network Modeling 
3.1 Obtain High-Resolution Delay Data from Econolite System

• All events from advanced, stopbar and pulse detectors are extracted as well as 

signal timing of all phases. 

• Queue length of each phase is estimated to calculate delay.

Arrival Pattern 
Estimated From 

Advanced Detectors

Departure Pattern 
Estimated From 
Pulse Detectors

Area underneath is total delay.

              =
           

            

Stopbar
Detectors

Advanced 
Detectors

Pulse 
Detectors

Detector Layouts
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3.2 Linear System Modeling: Is the System Nonlinear? 

Objective: To explore whether the system is 
linear or nonlinear

The intersection 4” is considered with the input 
as the green time and output as average per 
vehicle delays, denoted respectively as 𝑢(𝑘) and 
 (𝑘). 

k = sample index once every 5 cycles.

The model is assumed to be the 1st order of the 
following structure

 𝑘 + 1 =   𝑘 + 𝑏𝑢 𝑘 + 𝜔(𝑘)

where { , 𝑏} are unknown parameters to be 
estimated, 𝜔(𝑘) is a noise.

Denote 

𝜃 =
 
𝑏

, 𝜑 𝑘 =
 (𝑘)
𝑢(𝑘)

Then the following recursive least squares (RLS) 
algorithm is used to estimate { , 𝑏} using the data 
collected from Econolite/UH platform  

𝜃 𝑘 + 1 = 𝜃 𝑘 +
𝑃(𝑘)𝜑(𝑘)𝜀(𝑘)

1 + 𝜑𝑇 𝑘 𝑃(𝑘)𝜑(𝑘)

𝜑𝑇 𝑘 =  𝑘 𝑢 𝑘

𝜖 𝑘 =  𝑘 + 1 − 𝜃𝑇 𝑘 𝜑 𝑘

𝑃−1 𝑘 + 1 = 𝑃−1 𝑘 + 𝜑(𝑘)𝜑(𝑘)𝑇

where
• 𝜃 𝑘 is the estimate of 𝜃 at sample time 𝑘 (of every 

5 cycles), 
• 𝑃(𝑘) is the variance matrix,

• 𝜀(𝑘) is the estimation residual.
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3.2 Linear Model Results – First Order Dynamics

The following figures shows the modeling results, 𝜃 0 = 0, 𝑃 0 = 100𝐼2×2

Original data – normalized to [0, 1]

Delay

Green timing

Estimated a and b

Estimated a

Estimated b

Error 
probability 
density 
function
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Figure 3. The First 7 intersections along
Nimitz Highway

• Study area: Intersection 1-7

• Date: March 3-5, 8-12, 15-19, 22-26, 29-31,
April 1-2 (23 weekdays)

• Time: 4pm – 7 pm

• Signal phase: all phases of major and minor
streets

• Traffic volume: all movements

• Delay: all movements

• Sample Index: 5 signal cycles (Each cycle
≈170s)

3.3 Hybrid Neural Network (HNN) Model – Multiple Intersections
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3.3 Hybrid NN Model – Data Visualization

6 phases:

Missing data
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• HNN Model

 𝑘 + 1 = 𝐴 𝑘 + 𝐵𝑢 𝑘 +   𝑘 , 𝑢 𝑘 − 1 ,  (𝑘 ) (1)

where  𝑘 and 𝑢(𝑘) denote average delay per vehicle and green time for multiple intersections at time index

𝑘. 𝜔(𝑘) is noise. {A, B} are the weight matrix. Let   𝑘 , 𝑢 𝑘 − 1 ,  𝑘 be approximated and learned by

መ  𝑘 , 𝑢 𝑘 − 1 ,  𝑘 , 𝜋 using the real-time data, and  (𝑘) denote traffic volume.

This is Achieved by minimizing Eq.(3) using gradient approach.

Min 𝐽 =
1

2
( ො 𝑘 + 1 −  𝑘 + 1 )2 (2)

ො 𝑘 + 1 = A 𝑘 + 𝐵𝑢 𝑘 + መ  𝑘 , 𝑢 𝑘 − 1 ,  𝑘 , 𝜋 (3)

{A, B, 𝜋} are parameters to be trained. 𝜋 groups all NN weights and bias.

Linear Nonlinear Term

HNN

Objective

Traffic volume

3.3 Hybrid Neural Network (HNN) Modeling – Model Structure
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3.3 Hybrid NN - Model Training Algorithm

• Model parameters {A, B, 𝜋} are trained simultaneously by (6)-(11):

መ𝐴 𝑘 + 1 = መ𝐴 𝑘 − 𝜆1
𝜕𝐽

𝜕𝐴
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 ) (6)

𝐵 𝑘 + 1 = 𝐵 𝑘 − 𝜆2
𝜕𝐽

𝜕𝐵
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 )(7)

ො𝜋 𝑘 + 1 = ො𝜋 𝑘 − 𝜆3
𝜕𝐽

𝜕𝜋
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 )(8)

where 𝜆1, 𝜆2, 𝜆3 are learning rates.

𝜕𝐽

𝜕𝐴
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 ) = (ො 𝑘 + 1 −  𝑘 + 1 )

𝜕 ො𝑦

𝜕𝐴
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 ) = (ො 𝑘 + 1 −  𝑘 + 1 )  𝑘 (9)

𝜕𝐽

𝜕𝐵
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 ) = (ො 𝑘 + 1 −  𝑘 + 1 )

𝜕 ො𝑦

𝜕𝐵
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 ) = (ො 𝑘 + 1 −  𝑘 + 1 ) 𝑢 𝑘 (10)

𝜕𝐽

𝜕𝜋
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 ) = (ො 𝑘 + 1 −  𝑘 + 1 )

𝜕 መ𝑓

𝜕𝜋
|( 𝐴 𝑘 , 𝐵 𝑘 ,ෝ𝜋 𝑘 ) (11)

where y(k+1) is the measured data.

Parameter
update rules



3434

TABLE 2: Testing results at each intersection

TABLE 1: Training and Testing Results

3.4 Hybrid NN – Experiment Results

𝑀𝐴𝑃𝐸 =
1

𝑁𝐾


𝑘=1

𝐾



𝑛=1

𝑁
 𝑛(𝑘) − ො 𝑛(𝑘)

 𝑛(𝑘)

 𝑛(𝑘) : True delay at time k of phase n.
ො 𝑛(𝑘) : Predicted delay at time k of phase n.

𝑅𝑀𝑆𝐸 =
1

𝑁𝐾


𝑘=1

𝐾



𝑛=1

𝑁

( 𝑛(𝑘) − ො 𝑛(𝑘))2

𝑀𝐴𝐸 =
1

𝑁𝐾


𝑘=1

𝐾



𝑛=1𝑁

 𝑛(𝑘) − ො 𝑛(𝑘)

Training
(all)

Testing
(all)

Testing
(Main streets)

Testing
(Side streets)

Mean Absolute Percentage
Error (MAPE)

6.31% 6.51% 5.67% 6.98%

Rooted Mean Square Error
(RMSE)

9.62 s 10.18 s 4.14 s 12.33 s

Mean Absolute Error (MAE) 6.72 s 6.99s 3.03s 9.21 s

Intersection 1 2 3 4 5 6 7

Mean Absolute
Percentage Error (MAPE)

4.03% 5.09% 5.7% 7.74% 7.75% 6.74% 6.12 %

Rooted Mean Square
Error (RMSE)

3.79s 5.74s 10.76s 11.03s 12.61s 8.86s 10.30s

Mean Absolute Error
(MAE)

2.29s 4.36s 6.65s 8.72s 9.18 s 6.23s 7.60s
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• Testing: Intersection 1 (March 22 - 26), Total cycle length = 180 (sec)

3.4 Hybrid Neural Network Modeling – Experiment Results

Intersection 1

Comparisons – Testing data – Intersection #1 Phase # 1 Comparisons – Testing data – Intersection #1 Phase # 2

Comparisons – Testing data – Intersection #1 Phase # 4 Comparisons – Testing data – Intersection #1 Phase # 6

Testing Samples Testing Samples

Testing Samples Testing Samples
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• Testing: Intersection 4 (March 22 - 26)

3.4 Hybrid Neural Network Modeling – Experiment Results

Comparisons – Testing data – Intersection #4 Phase #1 Comparisons – Testing data – Intersection #4 Phase #2 Comparisons – Testing data – Intersection #4 Phase #3

Comparisons – Testing data – Intersection #4 Phase #4 Comparisons – Testing data – Intersection #4 Phase #5
Comparisons – Testing data – Intersection #4 Phase #6

Comparisons – Testing data – Intersection #4 Phase #7 Comparisons – Testing data – Intersection #4 Phase #8

Testing Samples Testing Samples
Testing Samples

Testing Samples Testing Samples
Testing Samples

Testing SamplesTesting Samples
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• Testing: Average travel delays at all 7 intersections

3.4 Hybrid NN – Experiment Results

Comparisons – Testing data – Intersection #1 Comparisons – Testing data – Intersection #2 Comparisons – Testing data – Intersection #3

Comparisons – Testing data – Intersection #4 Comparisons – Testing data – Intersection #5 Comparisons – Testing data – Intersection #6

Comparisons – Testing data – Intersection #7

Testing Samples Testing Samples Testing Samples

Testing Samples Testing Samples Testing Samples

Testing Samples
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4. Remaining Challenges and Barriers    

Most studies on AI for intersectional signal control only consider a few intersections, and no
real-time learning system has been deployed for large-scale field testing because of the lack
of comprehensive real-time data and user-friendly interfaces to the implementation. These
shortcomings have limited the current research on AI for mobility at the simulation level.

Moreover, energy efficiency has not been well addressed for these AI-based modeling and
controls. This constitutes the following challenges and technical barriers:

▪ Although the theory of AI-based modeling and control for signal control is maturing, the
field testing and closed-loop control implementation for large number of intersections is still
limited because of the insufficient real-time data for fast feedback control realization;

▪ The existing AI-based modeling for transportation systems cannot yet capture the nonlinear
and dynamic stochastic nature with high reliability and robustness; and

▪ Guaranteed control performance for the energy minimization is still lacking.

The current project therefore focuses on the development and implementation of real-time
learning and adaptation for the signal control along the arterial, where both NN modeling and
control will be adaptively learned during the real-time system operations.
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5. Traffic Signal Control – the Future

• Future Research

– Network-level control

• Network partition/decomposition, e.g.,~1000 intersections

• Distributed control, hierarchical control

• AI-based traffic signal control with real-world big data

– Impact of CAV penetration and level of automation

• The signal control performance would undergo a significant change when 
the penetration rate > 25–30% (Ban et al., 2011)

• Relationships between CAV penetration and traffic performance

• Quantify the benefits of different levels of vehicle automation levels for 
traffic signal control by simulation and real-world tests.



4040

6. Summary

• A review of the existing AI based signal control has been described

• New results have been presented

– Complete AI-based modeling for the 7 intersections along Nimitz Highway and Ala Moana 
Boulevard arterial with a <10% modeling error as expected.

• Future perspectives

– CAV with V2X communication presents a new solution to signal timing control,

– Big data processing presents further challenges for the real-time implementation of AI-based control
strategies for multiple intersections, especially for a large urban area.

Thank you for 
your attention


