Simulative Comparison of Scheduling at Krones AG with Shortest Slack

Professor Dr. Frank Herrmann Innovation and Competence Centre for Production Logistics and Factory Planning (IPF) OTH Regensburg frank.herrmann@oth-regensburg.de

Special Track: Simulation and Modelling in Supply Chains, along with 13th International Conference on Advances in System Simulation, SIMUL 2021, October 03 – 07, 2021 in Barcelona, Spain.

Improvement of procedures and parameters for planning in ERP systems used in industrial practice

Deterministic View

Buffering, Safety Stocks, Safety Times

Krones introduction

Krones bottling machines in customer production (left) and manufacturing (right)

- Founded in Neutraubling 1951 by Dr. Hermann Kronseder
- Full-range supplier for the complete value chain of
 - Beverage industry and
 - Liquid food industry solutions

Machines and Machine lines for the

- Process technology
- Bottling and Filling technology
- Packaging technology and packaging equipment technology
- Planning of complete factories

Further products of the Krones subsidiaries

- Intralogistics solutions
- Used machines
- Engineering services

Dynamic line planning and scheduling

- Krones is still growing by revenue and employees since foundation 1951.
- No expansion possible in Neutraubling: very limited space.
- Very large plants with diameters up to 7.2 m in large assembly hall.

Assembly Hall

Introduction of Krones AG

Dynamic layout planning and scheduling under strong technological restrictions **Planning problem**: A lot of machines are manufactured in an assembly shop in the same hall and time.

© OTH Regensburg, Professor Dr. Frank Herrmann

Assembly Hall - Hall 5

load in the plant hall: enough space.

entire plant: 3 fillers are to be assembled.

Delivery outdoor spot, limited space, all sub-assembly parts and materials of all machines & to mix materials from various machines and subassemblies. Machine-specific storage space, indoor-spot

Transportation :

main crane: due to design a./o. weight. trolleys or bins: auxiliary crane

/7

Leaving hall: Main crane. No blocking of cranes.

2020: Assembly of 145 machines

- more in future.

Processing time: 6 - 19 weeks; mean: 10.24 weeks & deviation of 2.5 weeks.

Leave: end of week

© OTH Regensburg, Professor Dr. Frank Herrmann

Actual Planning at Krones

Hierarchical production planning in the SAP® ERP system

Main service: ensuring the availability of materials. Results: Unordered orders per day.

© OTH Regensburg, Professor Dr. Frank Herrmann

Hierarchical production planning in the SAP® ERP system

Main service: ensuring the availability of materials. Results: Unordered orders per day.

Hierarchical production planning in the SAP® ERP system

Approaches and literature review

Hierarchical production planning in the SAP® ERP system Sequence of loading orders into the factory hall

Mayer, G., Pöge, C., Spieckermann, S., & Wenzel, S. (2020). Ablaufsimulation in der Automobilindustrie. Springer Verlag. Pinedo, M. (2016). Scheduling: Theory, Algorithms and Systems, Fifth Edition. New York, USA: Springer Science+Business Media.

Y. Ge and A. Wang, "Spatial scheduling for irregularly shaped blocks in shipbuilding", in Computers & Industrial Engineering Volume 152 Issue November 2020, p. 1–14, 2020.

Simulative Comparison of Scheduling at Krones AG with Shortest Slack, SIMUL 2021

Simulation of Hall 5

F_H

1/5

Simulation of Hall 5

 \bigcirc ١Û, 105m 30m

Needed: Occupancy of the area.

Simulative Comparison of Scheduling at Krones AG with Shortest Slack, SIMUL 2021

Simulation of the occupancy of the required area via Excel.

A14 A14 A14 <mark>4 \11 - \114</mark>	A21 A21 A21 A31 A31 A31	A41 A41 A41 A51 A51 A51 A51
A14 A14 A14 <mark>\11 \114</mark>	A21 A21 A21 A31 A31 A31 A31	A41 A41 A41 <mark>A51 A51 A51</mark>
A14 A14 A14	<mark>A21 A21 A21</mark> A31 A31 A31	A41 A41 A41 <mark>A51 A51 A51 A51</mark>
A64 A64 A64	A71 A71 A71	A81 A81 A81 A81 A91 A91
A64 A64 A64 <mark>\101 \101</mark>	A74 A74 A7 <mark>4 \12 \124</mark>	A81 A81 A81 A81 A91 A91
A64 A64 A64 <mark>\101 \101</mark>	<mark>A13 \13</mark> <mark>\14 \14</mark> \12 \124	A81 A81 A81 A81 A91 A91
19·19 101	<mark>A13 \13</mark> <mark>\14 \14</mark> \12 \121	A2011201
A19-A19-	<mark>\14 \14</mark>	A2014201

Layouts

Code occupancy of 1 m² fields.

Simulation of Hall 5

Simulation of the occupancy of the required area over weeks / sheets in Excel.

A14 A14 A14 <mark>\ 11 \ 114</mark>	A21 A21 A21 A31 A31 A31 A3	34 A41 A41 A41 A51 A51 A51 A51
A14 A14 A14 <mark>\ 1 1 \ 1 14</mark>	A24 A24 A24 A34 A34 A34 A3	34 A41 A41 A41 <mark>A51 A51 A5</mark> 4
A14 A14 A14	A21 A21 A21 A31 A31 A31 A3	34 A41 A41 A41 <mark>A51 A51 A5</mark> 1
A64 A64 A64	A74 A74 A74	A81 A81 A81 A81 A91 A91
A64 A64 A64 <mark>\104 \104</mark>	A74 A74 A7 <mark>4 \12 \1</mark>	24 A81 A81 A81 A81 A91 A91
A61 A61 A61 <mark>\1 01 \1 01</mark>	<mark>A13 \13</mark> \14 \14 \12 \1	24 A81 A81 A81 A81 A91 A91
19- 1 9 1 9 1 0 1 0	A13 \13 \14 \14 \14 \12 \1	24 A2011201
19.419	114 114	A2011201

Layouts

/ 16

Simulation of Hall 5

5/5

Example of a result of a simulated process.

Row ID [#]	Order ID [#]	Worklist [sequence]	Processing time [period]	Product [#]	Production hall [#]	Product width [unit]	Product length [unit]	Product rotation R090	Release date [period]	Due date [period]	Starting date [period]	End date [period]	Hall distance length [unit]	Hall distance width [unit]	Simulation time [second]
1001	1001	1001	14	1	1	12	12	Ν	1	5	1	14	2	2	1
1002	1002	1002	15	2	1	13	12	Ν	1	6	1	15	2	6	3
1003	1003	1003	13	3	1	10	12	Ν	1	5	1	13	2	10	1
1004	1004	1004	12	4	1	7	9	Ν	1	4	1	12	2	14	2
1005	1005	1005	12	5	1	7	9	Ν	1	4	1	12	2	23	2
1006	1006	1006	13	6	1	11	12	Ν	1	5	1	13	2	32	2
1007	1007	1007	12	7	1	7	9	Ν	1	5	1	12	2	36	2
1002	1000	1000	10	0	1	0	11	N	1	2	1	10	C	40	2

Basis: Order data from the year 2020.

- \rightarrow Direct use: very high deviation of delay and occupied area.
- \rightarrow No statistically significant results.

Reasons:

- Weeks: Final date possible start time >> Net processing time
 - \rightarrow Final deadlines: easy to meet.
- vailable time versus net processing time \approx 1 or < 1.
 - \rightarrow Delay: difficult to achieve or unavoidable.

NO

	Time pressure				
2 Classes of Work loads.	low	high			
Workload	WL1	WL2			
Number of orders	50	50			
Processing time: minimum / maximum / mean / standard deviation in [weeks]	6 / 17 / 9.1 / 2.0	8 /19 /11.4 / 2.5			
Product width: minimum / maximum / mean / standard deviation in [meter]	3 / 15 / 7.2 / 2.7	3 / 18 / 8.5 / 2.9			
Product length: minimum / maximum / mean / standard deviation in [meter]	3 / 12 / 8.9 / 2.1	3 / 12 / 10.2 / 2			
Due date: minimum / maximum / mean / standard deviation in [weeks]	11 / 23 / 14.3 / 2.8	11 / 23 / 14.3 / 2.8			

Same key figures for the final deadlines. Higher processing times in WL2: high due date pressure. Required areas for the orders in WL2 somewhat higher than in WL1.

Simulative Comparison of Scheduling at Krones AG with Shortest Slack, SIMUL 2021

Dispatching via Shortest Slack Time (slack)

	W	_1	WL2						
	Planner		Planner	slack					
cumulative tardiness [weeks]									
mean	74.3	77.6	290.5	270					
standard deviation	2.37	2.76	3.50	2.70					
cumulative unused space [meter ²]									
mean	20392	24808	29197	25885					
standard deviation	1040.86	2753.86	2208	1104					
total processing time in [weeks]									
mean	23.6	25.6	36	34.5					
standard deviation	0.47	1.25	1.00	0.50					
mean unused space per week [meter ²]									
mean	861.09	963.55	809.95	749.98					
standard deviation	27.21	61.69	38.83	21.13					

High deadline pressure (generally: unclear quantity of orders): Planners prefer space requirements to deadline compliance options. Conversely: better hall utilisation \rightarrow faster processing of orders.

Summary :

- Simulation of final assembly planning at Krones AG.
- Planning final assembly: simple priority rule better for planning situations with high time pressure.

Future investigations:

- Simultaneous planning of limited machine capacity and limited space.
- Literature: Two disjunctive problem classes.
- Development and simulation-based analysis of combinations of rules for meeting due dates with rules for avoiding unused space.

