Simulating Plug-in Electric Vehicle Charging for AutoML-Based Prediction of Regional Energy Demand

The 13th International Conference on Advances in System Simulation (SIMUL 2021) Barcelona, Spain | October, 2021

<u>Matthias Schneider</u> (matthias.b.schneider@daimler.com), Sören Frey (soeren.frey@daimler.com)

A company of Daimler AG

About the Presenter

- Matthias Schneider (presenter and author)
- Software Developer at Daimler TSS (Germany)
 - Area Digital Vehicle Products
- Graduated in September 2020 (Bachelor)
 - Computer Science at the
 Corporate State University Baden-Württemberg (DHBW)

Overview

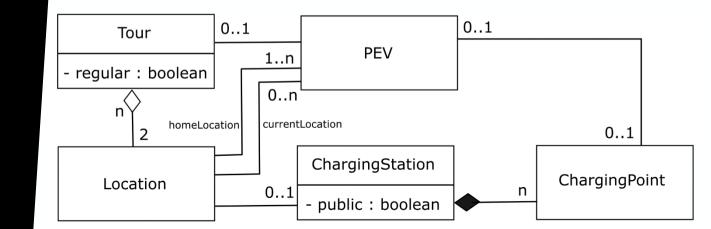
- **1** PEV Charging Simulation
- **2** Regional Energy Demand Prediction
- **3** Evaluation
- 4 Conclusion

1 PEV Charging Simulation

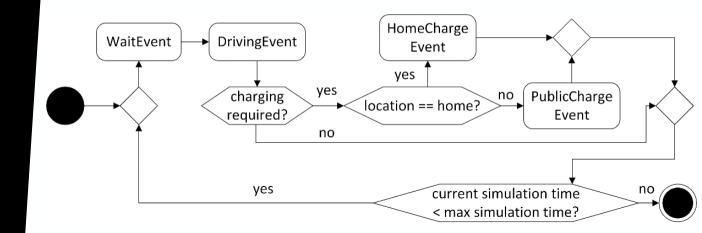
- **2** Regional Energy Demand Prediction
- **3** Evaluation
- 4 Conclusion

- Overview

- DES simulation (framework SimPy)
- Five major simulation entities
 - Tour
 - PEV
 - Location
 - ChargingStation
 - ChargingPoint



- Basic Simulation Flow
- Most important assumptions
 - PEV reaches destination and next tour cannot be performed with current SoC → charging
 - PEV cannot finish tour due to low SoC \rightarrow charging
 - PEV reaches home location \rightarrow charging
 - Tours to work start around 5am (maximum at 8am)
 - Tours back from work around 3-4pm
 - Less tours on weekends
- Two categories of tours (regular, irregular)
- Two types of charging stations (public, home)
- Distinction between weekday, weekend and vacation periods



- Simulation Input

- Configurable simulation input parameters → adjustment of simulation
- 71 degrees of freedom
- Usage of normal distributions
 - Configurable mean and standard deviation (e.g. StartOfWork in table)

Simulation Input Parameters (Excerpt)

Name	Description		
ChargingStation.Location	Location of the charging station		
ChargingStation.MaxCPower	Max. charging power of charging station		
ChargingStation.NrCP	Nr. of charging points at charging station		
Context.NrPEV	Nr. of simulated PEVs		
Home.Location	Home location of the PEV's owner		
StartOfWork.NDist.Mean	Mean start time of work		
StartOfWork.NDist.Sd	Standard deviation start time of work		

- Simulation output in CSV file
- Output contains relevant information of executed charging operations
 - e.g. duration, charged amount, location, start time, if charging took place during a vacation period, etc.

Simulation Output Parameters (Excerpt)

Name	Description			
ChargingOperation.Duration	The duration of the charging operation			
ChargingOperation.Kw	The charged energy amount in kW			
ChargingOperation.Location	Location of corresponding charging point			
ChargingOperation.Start	Start time of the charging operation			
Vacation.Present	Vacation period present during charging?			

- **1** PEV Charging Simulation
- 2 Regional Energy Demand Prediction
- **3** Evaluation
- 4 Conclusion

Regional Energy Demand Prediction

ML input example:

StartTime	DayOfWeek	Partition Id	ChargedKwh	MajorityChargingType	IsVacation	SumChargingTime	AvgChargingTime
1590364800	monday	6449	39.88	public	true	36723.46	36723.46
1590451200	tuesday	6449	55.18	private	true	50814.11	25407.05
1591660800	tuesday	6449	41.54	public	false	38255.0	12751.66

- Utilizing simulation output for short-term and regional energy demand prediction
 - Simulation configuration in this article reflects city Stuttgart (Germany)
- Feature engineering as pre-requirement for training ML models
 - Aggregation by partitions
 - Aggregation by time
 - Aggregation and averaging of remaining values (e.g. average charging time)

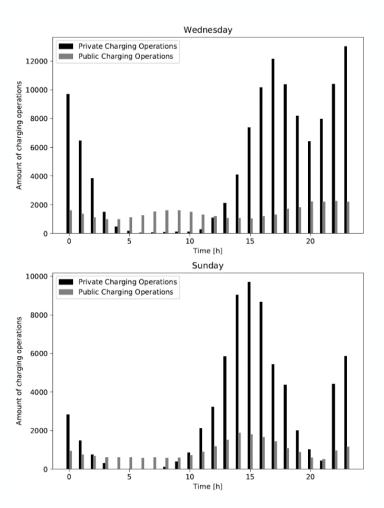
Regional Energy Demand Prediction

- AutoML library auto-sklearn used for model creation
 - AutoML: Automated process for creating ML models
 - 75% training data, 25% testing set
 - Vanilla (out-of-the-box) AutoML

- **1** PEV Charging Simulation
- **2** Regional Energy Demand Prediction
- 3 Evaluation
- 4 Conclusion

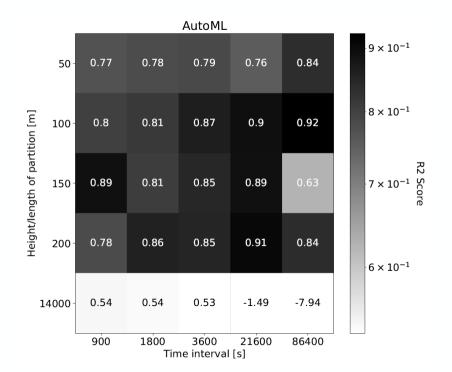
Evaluation

- Weekdays and weekend days with different charging patterns
- Weekday (e.g. Wednesday)
 - Tours to work (start around 5am) → Reduction of private charging
 - Tours back home (around 3-4pm) → Increase of private charging
- Weekend day (e.g. Sunday)
 - Strong increase of private charging at around 3pm
 → return from leisure trips
 - Only one high peak → not as much tours as on weekdays took place



Evaluation

- $R^2(y, \hat{y}) = 1 \frac{\sum_{i=1}^n (y_i \hat{y}_i)^2}{\sum_{i=1}^n (y_i \overline{y})^2}$
 - y_i : true value of the i-th sample
 - \hat{y}_i : predicted value of the i-th sample
 - \overline{y} : arithmetic mean
- Highest partition size provides worst models
 → other models perform well
- Best model: partition size 100m and time interval 24 hours



- **1** PEV Charging Simulation
- **2** Regional Energy Demand Prediction
- **3** Evaluation
- 4 Conclusion

Conclusion

- PEV charging behavior simulation
 - Usable for multiple different use cases in the context of electric mobility
- Training of useful ML models based on simulation output
 - Application example: prediction of regional energy demand
 - AutoML capable to provide very good predictions for the short-term, regional energy demand
- Future work
 - Improve simulation's underlying physical model
 - Take additional parameters into account (e.g. outside temperature, battery temperature, PEV's charging curve)

Daimler TSS GmbH Wilhelm-Runge-Strasse 11, 89081 Ulm / Phone +49 731 505-06 / Fax +49 731 505-65 99 tss@daimler.com / Internet: www.daimler-tss.com Domicile and Court Registry: Ulm / HRB-No.: 3844 / Management: Martin Haselbach (CEO), Isabelle Krautwald

.....

© Daimler TSS I Template Revision