
Current Approaches to
Graph Signal Processing

Pavel Loskot
pavelloskot@intl.zju.edu.cn

SIGNAL 2021: The Sixth International Conference on Advances in

Signal, Image and Video Processing

May 30, 2021 to June 03, 2021 - Valencia, Spain

Pavel Loskot, ZJU-UIUC©2021 1/63

About Me

Pavel Loskot joined the ZJU-UIUC Institute as Associate Professor in January 2021. He

received his PhD degree in Wireless Communications from the University of Alberta in Canada,

and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively,

from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow

of the HEA in the UK, and the Recognized Research Supervisor of the UKCGE.

In past 25 years, he was involved in numerous industrial and academic collaborative projects

in the Czech Republic, Finland, Canada, the UK, Turkey, and China. These projects concerned

mainly wireless and optical telecommunication networks, but also genetic circuits, air transport

services, and renewable energy systems. This experience allowed him to truly understand the

interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on statistical signal processing and importing methods from

Telecommunication Engineering and Computer Science to model and analyze systems more

efficiently and with greater information power.

Pavel Loskot, ZJU-UIUC©2021 2/63

Objectives

1. Survey mainstream approaches to graph signal processing

• this tutorial deliberately does not add any new ideas or contributions to
existing knowledge

2. Provide a starting point for researchers wishing to explore this area

• a few key ideas are identified that are exploited in many graph signal
processing problems

Outline

1. Why graph signal processing

2. Key ideas in graph signal processing

3. Survey of problems and tasks in graph signal processing

4. Recommended readings on graph signal processing

Part 1:

Why graph signal processing?

Pavel Loskot, ZJU-UIUC©2021 4/63

Growing Interest in Complex Systems

Networks seem to be suddenly appearing everywhere ...

Graphs

• mathematical models of networks
→ capture relations between pairs of objects

• many applications, well developed theory
→ Graph Theory, Network Science
→ less so in Signal Processing

Complex systems

• appear to be designed as networks
→ distributing and pooling resources
must be a fundamental principle of Nature

• tools to work with graphs

→ understanding complex systems

Big Data

Graph Structure

Signals and Systems

Signal Processing

Machine Learning

Complex
system

Pavel Loskot, ZJU-UIUC©2021 5/63

Understanding graphs

Graphs as data structure

• discrete mathematical structure

Graphs as computing models

• Gaussian networks

• Bayesian networks

• Markov random fields

• hidden Markov models

• finite state machines

• data flows (Tensorflow, Spark)

Graphs as system model

• physical networks

• social networks

• flow networks
(telecommunications, transport, utilities)

Graphs

Data
structures

Computing
models

System
models

Pavel Loskot, ZJU-UIUC©2021 6/63

Structure vs. function

STRUCTURE FUNCTION

Implementation Utility

Analysis strategy

• known tuples (structure,function) to train ML classifier (e.g. Deep Learning)

• common in biochemistry to predict protein function

• can replace Deep Packet Inspection with cheaper and faster ML classifiers

Synthesis strategy

• little explored Engineering territory

Reverse (data-driven) vs forward (application-driven) modeling

measurements model

application

available measurements constrain

possible applications

model

measurements

application

application determines required

measurements

Pavel Loskot, ZJU-UIUC©2021 7/63

Data Processing

theory
estimation statistics

machine
learning

rigorous
methods

heuristic

largesmall
data volumes

Signals and Systems

• concerned about creating and analyzing mathematical models

Signal processing

• models←→ measurements (equivalence)

• numbers arranged into regular structures (scalars, vectors, matrices)
→ most algebraic operations defined for these regular data structures

• outcome is an algorithm

Machine Learning

• arbitrary data structures, mostly heuristic approaches

• the aim is discovery of patterns, relationships and knowledge

Computer programming

• different types of data structures and associated algorithms

Pavel Loskot, ZJU-UIUC©2021 8/63

Structured Signals

Sets of scalar numbers

• V1,V2,V3, . . .

• V1(t),V2(t),V3(t), . . . scalar index t ∈ R
• V1(xxx),V2(xxx),V3(xxx), . . . vector index xxx ∈ RK

Discrete structures

• matrix vs. tensor: the latter has rank and additional constraints

Main idea

• map scalars V1,V2,V3, . . . to elements of discrete structures

• such mapping should reflect mutual relationships among V1,V2,V3, . . .

Pavel Loskot, ZJU-UIUC©2021 9/63

Graph Signals

Scalars at nodes

• example scenarios: social networks, gene interaction networks
→ nodes has properties/attributes/features
→ edges indicate pairwise relationships

• measurements at each network node v ∈ V, |V | = N

• graph signal: vvv = [v1,v2, . . . ,vN] (special case, N→∞)

v4

v3 v6

v7

v5v1

v2

f : V 7→ R |V |

Terminology

Graph Network System

vertex node component

edge link interaction

Pavel Loskot, ZJU-UIUC©2021 10/63

Graph Signals (cont.)

Scalars at edges

• example scenario: road and Internet traffic flows
→ edges has properties/attributes/features
→ edges are typically directed

• measurements at network edges e ∈ E

• graph signal: eee = [e1,e2, . . . ,e|E|]

Node Function Flow balance

sink absorbed flows inflows > outflows

source generates flows inflows < outflows

router mix and split flows inflows = outflows

e7e1

e5

e3

e6

e8

f : E 7→ R |E|

e4

e2

Pavel Loskot, ZJU-UIUC©2021 11/63

Graph Signals (cont.)

Scalars at simplexes

• k-simplex: a closed-path object with k edges and k+1 nodes
→ 0-simplexes are nodes
→ 1-simplexes are edges (pairwise relations or flows)
→ 2-simplexes are open/closed triangles (triplewise relations)

Simplical complexes of order k

• graph partitioning (a.k.a. graph cuts)
→ often aim to find the minimum cut

Pavel Loskot, ZJU-UIUC©2021 12/63

Mathematical Representation of Graphs

Adjacency matrix

[AAA]i j =






1 ei j = 1 (edge from node vi to v j)

0 ei j = 0 (no edge between vi and v j)

Weight matrix

[WWW]i j =






w ∈ R i , j (implies fully connected graph)

0 i = j

Degree matrix

[DDD]i j =






deg(vi) i = j

0 i , j

Laplacian matrix

LLL = DDD−AAA

LLL = diag(WWW ·1)−WWW, 1 = [1, . . . ,1]T

Pavel Loskot, ZJU-UIUC©2021 13/63

Mathematical Representation of Graphs (cont.)

Incidence matrix

[BBB1]i j =






1 edge j contains node vi

0 otherwise
LLL = BBB1BBBT

1 , AAA = BBBT
1 BBB1−2III

Higher-order incidence matrix

LLL2 = BBB2BBBT
2

→ does it uniquely define the

graph?

Pavel Loskot, ZJU-UIUC©2021 14/63

Mathematical Representation of Graphs (cont.)

Undirected graphs

• AAA, WWW, LLL and BBB1 all uniquely define the graph

• AAA, WWW and LLL are symmetric

• LLL ∈ RN×N is positively semi-definite i.e. its SVD:

LLL = UUUΛΛΛUUUT

ΛΛΛ = diag(λ1,λ2, . . . ,λN) ,λi ≥ 0

UUUUUUT
= IIIN (identity matrix)

– eigenvector uuui corresponding to eigenvalue λi: LLLuuui = λiuuui

– eigenvalues are obtained by solving the roots of det (LLL−λIII) = 0

– if λ1 < λ2 < · · · < λN and the graph consists of K connected components,

then λ1 = λ2 = · · · = λK = 0, and always, λ1 = 0 and uuu1 = [1, . . . ,1]T/
√

N

• the number of walks of length K between nodes vi and v j is equal to [AAAK]i j

• the number of walks of length at most K between vi and v j is [
∑K

k=1 AAAk]i j

→ can be used to enumerate node neighbors at distance at most K steps

Part 2:

Key ideas in
graph signal processing

Pavel Loskot, ZJU-UIUC©2021 16/63

Circular Graph

AAA =





0 1 0 · · · 0 1

1 0 1 0 · · · 0

0
... . . . 1 0 1 0

0 · · · 0 1 0 1

1 0 · · · 0 1 0





AAAuuuk = λkuuuk ⇐⇒ [uuui]n−1 = λk[uuuk]n (delay operator!)

⇒ [uuuk]n =
1
√

N
ej2πnk/N, λk = e−j2πk/N (this is DFT)

Note that

AAAn
= UUUΛΛΛUUU−1UUUΛΛΛUUU−1 · · ·UUUΛΛΛUUU−1

= UUUΛΛΛnUUU−1

so a (N −1)-degree polynomial

f (AAA) = h0AAA0
+h1AAA+ · · ·+hN−1AAAN−1

= UUU f (ΛΛΛ)UUU−1

Pavel Loskot, ZJU-UIUC©2021 17/63

Eigen-Decomposition of a General Graph

Example

AAA = UUUΛΛΛUUUT

Pavel Loskot, ZJU-UIUC©2021 18/63

Filtering of Graph Signals

Linear combining

xxx(t) = AAAxxx(t−1), vx(t−1) = [x1(t−1), x2(t−1), . . . , xN(t−1)]T

i.e., if Ni denotes direct neighbors of node i,

xi(t) =
∑

x j∈Ni

x j(t−1)

Delay of graph signal

xxx(t) = AAAxxx(t−1) = AAAt xxx(0), t = 1,2, . . .

Classical linear-time invariant filter

y(t) = h(t)∗ x(t) =

M−1∑

k=0

h(k) x(t− k)

Linear-time invariant filter for graph signals

yyy(t)= h(0)xxx(t)+h(1)xxx(t−1)+ · · ·+h(M−1)xxx(t−M+1)=

M−1∑

k=0

h(k)AAAt−k

︸ ︷︷ ︸

H(AAA)

xxx(0)=H(AAA) xxx(0)

- but, AAA may not be invertible, so ‘shift’ via AAA cannot be undone

Pavel Loskot, ZJU-UIUC©2021 19/63

Fourier Transform of Graph Signals

Recall

AAA = UUUΛΛΛUUU−1, xxx = [x1, x2, . . . , xN]T

- eigenvector uuuk corresponds to eigenvalue λk- for circular graphs,

Define

x̂xx = UUU−1xxx, i.e., xxx = UUUx̂xx, x̂xx = [x̂1, x̂2, . . . , x̂N]T

⇒ x̂k =

N∑

n=1

xn [uuuk]n and xn =

N∑

k=1

x̂k [uuuk]n

Polynomial filter

yyy = H(AAA)xxx = H(UUUΛΛΛUUU−1)xxx = UUUH(ΛΛΛ)UUU−1xxx

⇒ UUU−1yyy
︸︷︷︸

ŷyy

= H(ΛΛΛ) UUU−1xxx
︸︷︷︸

x̂xx

⇒ ŷ(k) =
(

h(0)λ0
k + · · ·+h(M−1)λM−1

k

)

x̂(k)

Pavel Loskot, ZJU-UIUC©2021 20/63

Filtering of Graph Signals (cont.)

Task

• design a graph filter hhh = [h0,h1, . . . ,hM−1]T having the desired frequency
response Gk at frequency λk, for k = 0,1, . . . ,N −1

Frequency domain filtering

1. obtain GDFT of graph signal: x̂xx = UUU−1xxx

2. frequency domain filtering: ŷyy =G(ΛΛΛ)x̂xx

3. recover the output graph signal: yyy = UUUŷyy

Vertex domain filtering

1. if N ≥ M, solve the linear set of equations for filter impulse response hhh

H(λk) = h0+h1λ
1
k + · · ·+hM−1λ

M−1
k =Gk, ∀k = 0,1, . . . ,N −1

⇒ VVVλhhh =GGGλ ⇒ hhh = VVV−1
λ GGGλ (invert Vandermonde matrix)

Pavel Loskot, ZJU-UIUC©2021 21/63

Laplacian Spectral Domain

Let

yyy = LLLxxx ↔ y(t) = 2x(t)− x(t−1)− x(t+1)

LLL = UUUΛΛΛUUU−1 and x̂xx = UUU−1xxx ↔ xxx = UUUx̂xx

Graph signal smoothness

LLLuuu = λuuu ⇒ uuuT LLLuuu = λuuuTuuu = λ

uuuT LLLuuu =
1

2

N∑

i, j=0

[AAA]i, j (u(i)−u(j))2
= λ

i.e. eigenvectors with small eigenvalues represent low-pass components of

graph signal xxx

Ideal low-pass filter

H(λ) =






1 ∀λ < λc

0 otherwise
(frequency response)

General filter

yyy =

M−1∑

m=0

hmLLLmxxx

Pavel Loskot, ZJU-UIUC©2021 22/63

Fourier Analysis of Graph Signals

Attempted definitions of

• convolution in vertex and spectral domains

• Z-transform for graph signals

• Parseval’s theorem for graph signals

• shift in frequency domain

... often not intuitive extensions, but more ‘can be considered as’

Other weaknesses

• signal shift using AAA or LLL may not be invertible

• since graph signal is non-periodic (what would a periodic extension be?),
Discrete-time Fourier Transform and not DFT should be assumed

• sampling should make the spectrum periodic

... indicative that other different approaches should be attempted

Pavel Loskot, ZJU-UIUC©2021 23/63

Smoothing Filters of Graph Signals

De-noising application

• input: noisy graph signal xxx

• output: smoothed output graph signal yyy

• solution:

min J =
1

2
‖yyy− xxx‖22+αyyyT LLLyyy

⇒ ∂

∂yyyT
J

!
= 0 ⇒ yyy = (1+2αLLL)−1 xxx ↔ ŷyy = (1+2αΛΛΛ)−1

︸ ︷︷ ︸

H(ΛΛΛ)

x̂xx

• alternative formulation:

min J =
1

2
‖yyy− xxx‖22+αyyyT LLLyyy+βyyyT LLL2yyy

︸︷︷︸

‖LLLyyy‖2
2

⇒ ∂

∂yyyT
J

!
= 0 ⇒ yyy =

(

1+2αLLL+2βLLL2
)−1

xxx

• it is also possible to consider sparsity instead of smoothness

Pavel Loskot, ZJU-UIUC©2021 24/63

Graph Sampling and Compression

Task

• represent or reconstruct graph signal from small number of its samples

K-sparse graph signal

x̂xx = [x̂(0), x̂(1), . . . , x̂(K −1),0, . . . ,0
︸ ︷︷ ︸

N−K

]T ⇒ x(n) =

K−1∑

k=0

x̂(k)uuuk(n)

• assume M samples available at nodes n1,n2, . . . ,nnM
, K ≤ M < N





y(n1)

y(n2)
...

y(nM)





︸ ︷︷ ︸

yyy (measurements)

=





uuu0(n1) uuu1(n1) · · · uuuN−1(n1)

uuu0(n2) uuu1(n2) · · · uuuN−1(n2)
... ...

uuu0(nM) uuu1(nM) · · · uuuN−1(nM)





︸ ︷︷ ︸

MMM (measurement matrix)





x̂(0)

x̂(1)
...

x̂(K −1)





︸ ︷︷ ︸

x̂xx(K)

• recovery from M > K samples

x̂xx(K) = (MMMT MMM)−1MMMTyyy ⇒ xxx = UUU [x̂xxT
(K),0 · · ·0]T

• this procedure can be used if positions of (N −K) zeros in x̂xx are known

Pavel Loskot, ZJU-UIUC©2021 25/63

Graph Sampling and Compression (cont.)

K-sparse graph signal

• neither positions nor the number of zeros in x̂xx is known

• reconstruction:
min‖XXX‖0 s.t. yyy = MMM XXX

• possible solution:

1. estimate zeros and their positions as (N −K) largest values in XXX = MMMT yyy

2. knowing K zero positions, use previous procedure to estimate xxx

Example

• signal measured at
vertices 2,3,4,5,7: yyy =
[0.224,1.206,1.067,1.285,1.116]T

• it is estimated that there
are (N − K) = 2 non-zero
components in XXX = MMMT yyy

Pavel Loskot, ZJU-UIUC©2021 26/63

Graph Sampling and Compression (cont.)

Aggregate sampling

• measurements using combining matrix CCC

yyy =CCCxxx = CCCUUU
︸︷︷︸

MMM

x̂xx

• reconstruction: see previous methods

• can assume sampling at one vertex only

y0 = [xxx]n, y1 = [AAAxxx]n, . . . , yN−1 = [AAAN−1xxx]n

then

CCC =





0 · · ·1 · · ·0
rown(AAA)
...

rown

(

AAAN−1
)





Pavel Loskot, ZJU-UIUC©2021 27/63

Graph Sampling and Compression (cont.)

Task

• sub-sample large graph signals to reduce storage requirements and data
processing complexity

• downsampled graph to retain certain similarity to original graph
→ connectivity distribution
→ spectral properties

Methods

• random selection of nodes
(equi-probable, proportional
to the node degrees or
ranks) is satisfactory in very
large graphs

• random selection of
edges tends to produce
disconnected graphs

• random walk and maximum
spanning tree based

• many other methods in
literature

Pavel Loskot, ZJU-UIUC©2021 28/63

Flows on Graphs

Diffusion
∂

∂t
xxx(t) = −LLLxxx(t)

• backward difference approximation

xxx(t+1)− xxx(t) = −αLLLxxx(t+1) ⇒ xxx(t+1) = (III+αLLL)−1xxx(t), t = 0,1, . . .

• forward difference approximation

xxx(t+1)− xxx(t) = −αLLLxxx(t) ⇒ xxx(t+1) = (III−αLLL)xxx(t), t = 0,1, . . .

Alternative interpretation

• minimize the smoothness of xxx

min
xxx

xxxT LLLxxx ⇒ ∂

∂xxx
xxxT LLLxxx = 2xxxT LLL

⇒ xxx(t+1) = xxx(t)−αLLLxxx(t) = (III−αLLL)xxx(t) (steepest descent)

⇒ x̂xx(t+1) = (III−αΛΛΛ)x̂xx(t) (spectral domain)

Pavel Loskot, ZJU-UIUC©2021 29/63

Building Graph Models

Graph model

• what do node represent?

• when to add edges between nodes?

Node modeling

• obvious cases: social networks, agent networks, routers

• less obvious cases: time series data, complex systems

• challenges:
→ merging/clustering nodes
→ time-varying scenarios

Edge modeling

• obvious cases: social networks, flow networks

• challenges in other cases:
→ weight metric selection
→ no edge can also mean missing data
→ time-varying scenarios

Pavel Loskot, ZJU-UIUC©2021 30/63

Building Graph Models (cont.)

Euclidean distance metric

• used when mutual geographical location rrr of nodes matters, i.e., the
distance rnm = ‖rrrn− rrrm‖2

• edge weight metrics with parameters α ≥ 0, r0 > 0 and c ≥ 0

Wnm =






e−α (rnm)c
rnm ≤ r0

0 rnm > r0

• these weights can produce exponentially weighted moving average of
neighboring nodes for linear graph model

xxx(t+1) = (III+WWW) xxx(t)

Other edge metrics

• any similarity metric can be considered

• total variance, correlation (Pearson, Spearman)

• binary (relationship exists/does not exist)

• learning/extrapolating relationships and weights

Pavel Loskot, ZJU-UIUC©2021 31/63

Learning Graphs from Data

Task

• given measurements xxx1, xxx2, . . ., xxxN at N nodes, construct a graph
representing the data

• exploit smoothness of the graph signal rather than internal correlations

Define

• data matrix XXX = [xxx1, xxx2, . . . , xxxN]

• graph signal smoothness

tr
{

XXXT LLLXXX
}

=
1

2

∑

n,m

[WWW]n,m ‖xxxn− xxxm‖2 =
1

2
tr{WWW∆∆∆XXX} , [∆∆∆XXX]n,m = ‖xxxn− xxxm‖2

Optimization problem

min
WWW

tr{WWW∆∆∆XXX}+αh(WWW) s.t. diag(WWW) = 0, WWW =WWWT

• regularization h(WWW): ‖WWW‖1, ‖WWW‖22, logdetWWW

• additional constraint diag(WWW1) = III (weights normalization), or as objective

min
WWW

tr{WWW∆∆∆XXX}+αh(WWW)−β1T logWWW1 s.t. diag(WWW) = 0, WWW =WWWT

Pavel Loskot, ZJU-UIUC©2021 32/63

Learning Graphs from Data (cont.)

Noisy data

• learn the graph and de-noise the measurements

• optimization problem

min
WWW,YYY
‖YYY −XXX‖22+α tr{WWW∆∆∆YYY}+βh(WWW) s.t. diag(WWW)= 0, WWW =WWWT , [∆∆∆YYY]n,m=

∥
∥
∥yyyn− yyym

∥
∥
∥

2

Gaussian assumption

• graph signal as Gaussian-Markov random field

• optimization problem (gdet is generalized determinant) is defined as
maximum-likelihood estimation of LLL

max
LLL

loggdet LLL− tr{CCCLLL}−αh(LLL) s.t. LLL1 = 0, LLL = LLLT

where CCC is estimated covariance matrix CCC = 1
n−1

∑n
i=1 coli

(

XXX− X̄XX
)

coli
(

XXX− X̄XX
)T

tr{CCCLLL} ∝ tr
{

XXXT LLLXXX
}

Note

• these methods pose no constraints on graph structure except the number of
graph nodes

Pavel Loskot, ZJU-UIUC©2021 33/63

Learning Graphs from Data (cont.)

Learning specific graph structure

• grid, tree, bipartite, multi-component, regular, densely connected etc.

• challenge is how to specify the graph structure as optimization constraint

Strategy

• spectral constraints on eigenvalues or eigenvectors of LLL or WWW

ΛΛΛ(LLL) ∈ Sλ or ΛΛΛ(WWW) ∈ Sλ
• algorithms for such non-convex problems were developed in literature

Example: k-component graph

• learn k clusters, i.e., λ1 = · · · = λk = 0, and additional constraint

⇒ rank(LLL) = N − k ⇔
k∑

i=1

λi(LLL) = 0

• unforeseen problem: k-component graph learning generates isolated nodes
→ add constraint(s) to avoid zero-degree nodes, e.g. diag(WWW1) = III

Pavel Loskot, ZJU-UIUC©2021 34/63

Learning Graphs from Data (cont.)

Learning correlation graph

• for n = 1,2, . . . ,N, sequentially determine the edge weights Wnm

min
rown(WWW)

∥
∥
∥
∥
∥
∥
∥
∥
∥

xxxn−
N∑

m=1
m,n

Wnmxxxm

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

+α‖rown(WWW)‖1 (LASSO minimization)

LASSO minimization

min
xxx
‖yyy−AAAxxx‖22+α‖xxx‖1

is solved iteratively as

xxxk+1 = soft
(

2βAAAT (yyy−AAAxxxk)+ xxxk,βα
)

, k = 1,2, . . .

where the learning step β

0 < β < 1/(2λmax), λmax is max eigenvalue of AAAT AAA

and

soft(y,u) =






y+u, y < −u

0, |y| ≤ u

y−u, y > u

Pavel Loskot, ZJU-UIUC©2021 35/63

Learning Graphs from Data (cont.)

Non-Gaussian data

• tweak tr{CCCLLL} term in objective function, e.g. majorization-minimization
iterations [Palomar et al. 2017]

tr
{

CCCkLLL
}

where CCCk
=

1

n

n∑

i=1

coli(XXX)coli(XXX)T

coli(XXX)T LLLk coli(XXX)
, k = 1,2, . . .

Time-varying data

• divide data to T chunks, estimate graph LLLt for every data chunk t = 1,2, . . . ,T

• add regularization term
∑T

t=2 d(LLLt,LLLt−1) to objective function to maintain graph
consistency in time, e.g.

d(LLLt,LLLt−1) = ‖LLLt−LLLt−1‖22

• LLLt can be estimated sequentially to reduce complexity

Pavel Loskot, ZJU-UIUC©2021 36/63

Spectral Clustering

Task

• partition the graph in K clusters of approximately equal size

• edges between clusters should have small weights

Solution

• any clustering algorithm e.g. K-means

Define graph cut

- graph weights Wi j between nodes vi ∈ V and v j ∈ V

V1∪Vc
1 =V, V1∩Vc

1 = ∅ ⇒ cut
(

V1,V
c
1

)

=

∑

i∈V1, j∈Vc
1

Wi j (other operators: avg, min)

- for K disjoint node subsets

∪K
k=1Vk = V, Vk∩Vl = ∅ ∀k, l ⇒ cut(V1, . . . ,VK) =

K∑

k=1

cut
(

Vk,V
c
k

)

- normalization to encourage equal-size clusters

⇒ cut(V1, . . . ,VK) =

K∑

k=1

cut
(

Vk,V
c
k

)

|Vk|

Pavel Loskot, ZJU-UIUC©2021 37/63

Spectral Clustering (cont.)

Optimum clustering via graph signal (case K = 2)

given V1, let a =

√
|Vc

1
|

|V1|
, and define graph signal f (vi) = fi =






a vi ∈ V1

1/a vi ∈ Vc
1

the smoothness, fff T LLL fff = 1
2

∑N
i, j=1 Wi j (fi− f j)

2
=

N
2

∑2
k=1

cut
(

Vk,V
c
k

)

|Vk|

⇒ min
V1⊂V

fff T LLL fff s.t. fff T
1 = 0, ‖ fff ‖22 = N (NP-hard problem)

Applications of graph clustering

• graph partitioning
→ graph signals often smooth within clusters
→ nodal domain of f is a sub-graph where f in all nodes have the same sign

• hierarchical graph representation

• graph reduction
→ replace small clusters with single node

• graph visualization

• graph coloring

Pavel Loskot, ZJU-UIUC©2021 38/63

Graph Downsampling

Task

• remove less important nodes and/or edges
→ how to select those?
→ e.g. account for edge weights and node degrees

• aim: reduce the graph size by half

Solution using the largest eigenvector

• let uuumax be the eigenvector of LLL
corresponding to eigenvalue λmax

Vkeep=






vi ∈ V :






uuumax(i) ≥ 0

uuumax(i) ≤ 0

N/2-largest |uuumax(i)|






• note that Vkeep and Vc
keep

represents

the graph cut

Pavel Loskot, ZJU-UIUC©2021 39/63

Random Signals on Graphs

Stationary graph signal

• can be expressed as

xxx = xxx0
︸︷︷︸

deterministic

+

N−1∑

l=0

hlLLL
l

︸ ︷︷ ︸

HHH

www

where www are zero-mean uncorrelated random samples

• corresponding covariance CCCxxx = E
[

xxxxxxT
]

= HHHHHHT

• if LLL = UUUΛΛΛLLLT , then sss = diag
(

UUUTCCCxxxUUU
)

is power spectral density vector

Non-stationary graph signal

• www does not need to be white i.e. CCCwww = E
[

wwwwwwT
]

, III

• consequently, UUUTCCCxxxUUU is not a diagonal matrix

• one strategy: if CCCwww is known, find HHH, so that ĈCCxxx =
1
M

∑M
m=1 xxxmxxxT

m and CCCxxx =

E
[

xxxxxxT
]

= HHHCCCwwwHHHT are close in some sense assuming symmetry HHH = HHHT

Pavel Loskot, ZJU-UIUC©2021 40/63

Graph observability

Linear graph

• ai j(t) is edge weight between nodes i and j

• xi is weight of node i, so the internal state xxx(t) = [x1(t), . . . , xn(t)]T

• if time-invariant, state-space description

ẋxx(t) = AAA xxx(t)+BBBuuu(t)

yyy(t) = CCC xxx(t)

... this is a linear MIMO system!

Observability

• a state (values of internal variables) can be obtained from finite observations

→ find state trajectory xxx(t) from any initial state xxx(0) to the current state

• strongly connected components (there is path between any two nodes)

→ have to observe at least one node from each SCC

• for linear model, can use maximum matching to find minimum # sensors

→ often much larger than # SCC (due to model symmetries)

• surprisingly, for non-linear model, sensors predicted by SCCs are necessary
as well as sufficient (since model symmetries are rare)

Pavel Loskot, ZJU-UIUC©2021 41/63

Graph controlability
Kalman’s condition

• controlability matrix DDD must be full rank i.e.
rankDDD = n where n = |xxx|

DDD =
[

BBB,AAABBB,AAA2BBB, . . . ,AAAn−1BBB]

Driver nodes

• for linear networks, maximum matching again helps

• surprisingly, driver nodes tend to avoid hubs

→ average degree of driver nodes is smaller than average degree of graph

→ # driver nodes mainly determined by degree distribution

“Sparse and heterogeneous networks are harder to control than dense and

homogeneous networks.”

Pavel Loskot, ZJU-UIUC©2021 42/63

Graph tomography

Linear graph

• assume a graph with the weight ai j ∈ R between nodes i and j

• let path P = {(i1i2), (i2i3), . . . , (id−1id)} from node i1 to node id
→ accumulated weight along the path P is ai1id =

∑

(i j)∈Pai j

→ in matrix notation
yyy = PPP ·aaa+www

where rows of binary matrix PPP ∈ {0,1}m×n correspond to each measured path,
aaa is graph adjacency vector, and m denotes the number of probes

i3a12
a23

a34

a(d−1)d
i1

i2 id−1

id

Multiplicative weights

• if ai1id =
∏

(i j)∈Pai j, we can assume model

logyi1id =

∑

(i j)∈P
logai j+w

Pavel Loskot, ZJU-UIUC©2021 43/63

Graph tomography (cont.)

Task 1

• given measurements yyy, find minimal path matrix PPP to recover k weights in aaa

→ this assumes that the graph structure is known

• the path matrix PPP is minimal if either the sum-length of all probing paths
considered is minimum, or if the longest among these paths is minimized

• trivial (non-minimal) design: measure all weights ai j one by one

→ determining all paths of a general graph is NP-hard

→ in practice, only a subset of nodes may be used for I/O or as gateways

Task 2

• knowing the graph structure, and given subset of paths PPP and the
corresponding measurements yyy, recover k graph weights in aaa

→ PPP may not be large enough to enable compressive sensing of aaa

→ some weights in aaa may be calculated if overdetermined system (m ≥ k)

• different strategy:

→ determine weights change ∆aaa if nominal weights aaa are known

yyy = PPP · (aaa+∆aaa)+www = PPP ·aaa
︸︷︷︸

known

+PPP ·∆aaa+www

assuming k′-sparse change vector ∆aaa with k′≪ k

Pavel Loskot, ZJU-UIUC©2021 44/63

Information diffusion1

Diffusion in networks

• information, ideas, behaviors, epidemics, computer viruses, economic
transactions, petitions etc.

• transfer occurs in a particular random time

Mathematical model

• from node j to i with a rate parameter α ji ∼ 1/ <∆i j>

f (∆i j,αi j) usually exponential or power-law but also multi-modal distributions

• information cascade: a set {ti}i where

∆ ji = (t j− ti) ∼ f (∆i j,αi j)

• node is activated once by the first parent

1MG Rodriguez, Le Song, KDD tutorial, 2015.

Pavel Loskot, ZJU-UIUC©2021 45/63

Information diffusion (cont.)

Network inference problem

• given information cascades {t1
i
}i, {t2

i
}i, ... infer connection (adjacency) matrix

and rate constants αi j > 0

→ αi j = 0 if no connection from i to j

• assuming independence of individual diffusion events, we can obtain and
then maximize the likelihood of observed cascades c ∈C

ÂAA = argmaxAAA

∑

c∈C
log f ({tc

i }i ,AAA)

• can we recover completely recover AAA?

→ number of cascades |C| needs to be large (cf. compressive sensing)

|C| ≈ O(d3
max log N)

where dmax is the maximum in-degree in a network of N nodes

Other inferences

• find probability Pr(tn ≤ T |AAA)

Pavel Loskot, ZJU-UIUC©2021 46/63

Information diffusion (cont.)

Content-sensitive diffusion

∆ ji ∼ f (∆ ji,α jim), m = 1,2,3, . . .

• average rate ᾱ ji =
∑

mα jim Pr(m)

Time-varying rates and connections

∆ ji(τ) ∼ f (∆ ji,α ji(τ)), α ji(τ) ≥ 0

• tracking variations

ÂAA(τ) = argmaxAAA(τ)

∑

c∈C
wc(τ) log f ({tc

i }i ,AAA(τ))

where weights wc(τ) = exp(τ/T)
(i.e. forget history more in the past)

Practical challenges

• difficult to identify individual cascades in observed data

→ most cascades are single values (never propagates)

• solution: assume counting process (of a specific activity or event)

Ni(t) =

t∑

−∞
λi(τ)
︸︷︷︸

dτ

where the process intensity λi ∝ αi has the unit [events/hour]

Pavel Loskot, ZJU-UIUC©2021 47/63

Information diffusion (cont.)

Exogenous activity

• drivers external to the network

Endogenous activity

• response to activities of other users within the network

Total intensity

λ(t) = λ0(t)
︸︷︷︸

exogenous

+ λ∗(t)
︸︷︷︸

endogenous

Hawkes process:

λ∗(t) =
∑

i:ti<t

auui
g(t− ti)

auui
: influence of neighbor ui on user u

g(t): memory (lifetime of the event or activity)

Correlated events/activities

Pavel Loskot, ZJU-UIUC©2021 48/63

Information diffusion (cont.)

Maximizing the influence

• influence up to time T from nodes in A

σ(A;T) = E[N(A;T)] =

N∑

n=1

Pr(tn ≤ T |A)

• maximization (NP-hard problem)

A∗ = argmax|A|≤Kσ(A;T)

→ we can use a greedy algorithm to solve it or other approximate solutions,
e.g.

Pavel Loskot, ZJU-UIUC©2021 49/63

Information diffusion (cont.)

Source localization

• observations often incomplete, can we still find the first node in a cascade?

• need to eliminate all unobserved events from the likelihood before
maximizing it→ computationally very difficult problem

→ importance sampling-like strategies seem to work well

Activity shaping

Influence

maximization

Fixed

incentive

One time same

information

Aim is maximum

adoption

Activity

shaping

Variable

incentive

Multiple time, multiple

info, recurrent

Many different

shaping tasks

• incentivize few users to produce a given level of overall activity

→ exogenous activity→ endogenous activity

• example objectives:

– reach average activity E[λ(t)] at time t where λ(t) = λ∗(t)+λ0(t)

– maximize utility U(E[λ(t)])

– maximize activity of the least active user

– maximize the total number of events in the network

Part 3:

Survey of problems and tasks
in graph signal processing

Pavel Loskot, ZJU-UIUC©2021 51/63

Problems in Network Science
Subgraphs

• community detection

• maximum clique identification

• strongly connected components

Path

• minimum spanning tree

• maximum/perfect matching

• shortest path between a pair of nodes

• longest path in a graph (diameter)

• traveling salesman problem

Many other

• drawing and visualization

→ graph coloring

• graph search

• linear ordering of nodes (for acyclic graphs)

→ more generally, ranking and sorting of nodes

• maximum flow/minimum cut

(mostly static graphs)

Pavel Loskot, ZJU-UIUC©2021 52/63

Problems in Graph Signal Processing

Main concerns

• graph model given a priory or learned from data

• working with directed graphs

• how to assign variables to graph

• time-varying and/or random graph structure and variables

• linear and non-linear processing of graph signals

• scalability to very large graph signals

Graph processing tasks (graph structure only)

• graph algebra
→ graph fields
→ addition, multiplication, modulo operations

• graph conversions and transforms
→ different types of graph
→ to/from other discrete structures

• graph structure measures and description
→ well defined by Network Science (motifs, clustering etc.)

• graph embedding in high-dimensional vector space
→ often used in machine learning tasks

Pavel Loskot, ZJU-UIUC©2021 53/63

Problems in Graph Signal Processing (cont.)

Graph signal processing tasks (graph structure and variables)

• defining graph signals
→ mapping variables to graph (nodes, edges, simplexes)
→ learning graph from data (given type or general graph)
→ graph signal←→ manifold conversions

• orthonormal decomposition
→ a priory basis selection or basis learned from data

• spectral (frequency domain) representation
→ Fourier analysis (discrete Fourier transforms)
→ wavelet transforms

• filtering
→ in time and in frequency domains
→ convolution, de-convolution, windowing
→ designing low-pass and high-pass filters
→ observability and controlability

• sampling, downsampling and compression
→ lossless or near-perfect reconstruction
→ graph signal tomography

Pavel Loskot, ZJU-UIUC©2021 54/63

Problems in Graph Signal Processing (cont.)

Graph signal processing tasks (cont.)

• invariant measures
→ graph signal shift in time and frequency domains

• clustering, classification, sorting, ranking samples of graph signals

• time-varying signals
→ flows and diffusion on graphs (information)
→ events spreading over graphs (epidemics)
→ event detection from small number of observations

• random graph signals
→ stationarity and ergodicity
→ de-noising and smoothing
→ parameter estimation from small number of observations

Driving applications of graph signal processing

• image processing

• brain functional networks

• semi-supervised and deep graph learning

... bottom line: taking into account signal (graph) structure can greatly
improve the performance

Part 4:

Recommended readings on
graph signal processing

Pavel Loskot, ZJU-UIUC©2021 56/63

Books

Book Chapters

Pavel Loskot, ZJU-UIUC©2021 57/63

Journal Papers

Pavel Loskot, ZJU-UIUC©2021 58/63

Journal Papers (cont.)

Pavel Loskot, ZJU-UIUC©2021 59/63

Presentations

Pavel Loskot, ZJU-UIUC©2021 60/63

Youtube Presentations

Pavel Loskot, ZJU-UIUC©2021 61/63

Youtube Presentations (cont.)

Conclusions

Pavel Loskot, ZJU-UIUC©2021 63/63

In Summary

Main observations

• there is clearly a need to work with graph signals
→ network like systems and applications
→ accounting for signal structure can significantly improve the performance

• (not surprisingly) the aim is to extend signal processing to graph signals

• most techniques for graph signal processing evolved around eigen-
decomposition of WWW or LLL

... however

• there are often several/many different approaches to accomplishing the
same thing or task in graph signal processing
→ the field still appears far less mature than e.g. Network Science
→ a viable strategy can be transforms of graphs←→ regular signals

• distributed signal processing seems to be appealing practical alternative to
(centralized) graph signal processing

Thank you!

pavelloskot@intl.zju.edu.cn

