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ABout ME

joined the ZJU-UIUC Institute as Associate Professor in January 2021. He
received his PhD degree in Wireless Communications from the University of Alberta in Canada,
and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively,
from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow
of the HEA in the UK, and the Recognized Research Supervisor of the UKCGE.

In past 25 years, he was involved in numerous industrial and academic collaborative projects
in the Czech Republic, Finland, Canada, the UK, Turkey, and China. These projects concerned
mainly wireless and optical telecommunication networks, but also genetic circuits, air transport
services, and renewable energy systems. This experience allowed him to truly understand the
interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on statistical signal processing and importing methods from
Telecommunication Engineering and Computer Science to model and analyze systems more
efficiently and with greater information power.
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OBJECTIVES

e this tutorial deliberately does not add any new ideas or contributions to
existing knowledge

e a few key ideas are identified that are exploited in many graph signal
processing problems

OuTLINE
1. Why graph signal processing
2. Key ideas in graph signal processing
3. Survey of problems and tasks in graph signal processing

4. Recommended readings on graph signal processing



Part 1:
Why graph signal processing?
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GROWING INTEREST IN COMPLEX SYSTEMS

Networks seem to be suddenly appearing everywhere ...

e mathematical models of networks
— capture relations between pairs of objects

e many applications, well developed theory
— Graph Theory, Network Science
— less so in Signal Processing

e appear to be designed as networks
— distributing and pooling resources
must be a fundamental principle of Nature
e tools to work with graphs
— understanding complex systems

Big Data Signals and Systems Machine Learning

Complex
system Graph Structure Signal Processing
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UNDERSTANDING GRAPHS

e discrete mathematical structure

Data
structures

e (Gaussian networks

e Bayesian networks

e Markov random fields

e hidden Markov models

e finite state machines

e data flows (Tensorflow, Spark)

Computing
models

e physical networks
e social networks

e flow networks
(telecommunications, transport, utilities)
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STRUCTURE VS. FUNCTION

Implementation

STRUCTURE

e known tuples (structure,function) to train ML classifier (e.g. Deep Learning)
e common in biochemistry to predict protein function
e can replace Deep Packet Inspection with cheaper and faster ML classifiers

e little explored Engineering territory

measurements

application

—

available measurements constrain application determines required
possible applications measurements
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DATA PROCESSING

theory

rigorous heu>rl stic
methods
small large
data volumes =

e concerned about creating and analyzing mathematical models

e models «—— measurements (equivalence)

e numbers arranged into regular structures (scalars, vectors, matrices)
— most algebraic operations defined for these regular data structures

e outcome is an algorithm

e arbitrary data structures, mostly heuristic approaches
e the aim is discovery of patterns, relationships and knowledge

e different types of data structures and associated algorithms
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STRUCTURED SIGNALS

o Vi,V,Vs,...
o Vi(t),Vy(t),V5(t),... scalar index t € R
o Vi(x),Va(x),V3(x),... vector index x € RK

[

Rank O Rank 1 Rank 2 Rank 3 Rank 4
Tensor Tensor Tensor Tensor Tensor
scalar vector matrix

e maltrix vs. tensor: the latter has rank and additional constraints

e map scalars Vi,V,, Vs,... to elements of discrete structures
e such mapping should reflect mutual relationships among V,,V,, Vs, ...
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GRAPH SIGNALS

e example scenarios: social networks, gene interaction networks
— nodes has properties/attributes/features
— edges indicate pairwise relationships

e measurements at each network nodeveV, |V|=N
e graph signal: v =[vy,v,...,vy] (Special case, N — o)

V4 Y
V1 >

V7

"
V2 3 V6 GRAPH  NETWORK SYSTEM

7 vertex node  component
f: V=R edge link interaction
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GRAPH SIGNALS (CONT.)

e example scenario: road and Internet traffic flows
— edges has properties/attributes/features
— edges are typically directed

e measurements at network edges e € £
e graph signal: e = [ey,e»,...,eEg|]

NoDE FuNcCTION FLow BALANCE

sink absorbed flows inflows > outflows
source  generates flows inflows < outflows
router mix and split flows inflows = outflows

f: E— RIEI



Pavel Loskot, ZJU-UIUC ©2021 11/63

GRAPH SIGNALS (CONT.)

e k-simplex: a closed-path object with k edges and k+ 1 nodes
— 0-simplexes are nodes
— 1-simplexes are edges (pairwise relations or flows)
— 2-simplexes are open/closed triangles (triplewise relations)

e graph partitioning (a.k.a. graph cuts)
— often aim to find the minimum cut

Ao -

Aq

Simplicial complex of orde 0 Simplicial complex of order 1
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MATHEMATICAL REPRESENTATION OF GRAPHS

Al - 1 e;;=1 (edge from node v; to v))
" 10 ;=0 (no edge between v; and v))

W1, = {w e R i+ j(implies fully connected graph)
7o i=j

deg(v;)) i=]
[D]ij:{ . : ]
0 A

L=D-A
L=diagW-1)-W, 1=[1,...,1]"
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MATHEMATICAL REPRESENTATION OF GRAPHS (CONT.)

L=BB, A=B B -2I

(Bl = 1 edge j contains node v;
P70 otherwise

|
¢ -1 -1 -1 ] L 0 L] ] T
1 1l 1 ] | 1 | 1l i
[ n ] 1 1 m =1 [ | v
L ] ] 1l H] 0 1 1
{ L] ] L] ] 1 1 -1 i 1
= E >
[ 1 0
<1 0
~1 0
0 0
0 0 E
00
T 0 1
L,=8B,B, 0 1
. . . 0 =g
— does it uniquely define the \ /
— | —>»

graph?
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MATHEMATICAL REPRESENTATION OF GRAPHS (CONT.)

e A, W, L and B, all uniquely define the graph
e A, W and L are symmetric
o Lc RV is positively semi-definite i.e. its SVD:

L=UAU"

A = diag(1;,4,,...,4Ay),4; 20
UU" = Iy (identity matrix)

— eigenvector u; corresponding to eigenvalue A;: Lu; = Au;
— eigenvalues are obtained by solving the roots of det(L— A1) =0
— if 4 <4, <--- < Ay and the graph consists of K connected components,
then 3y =A, =---=Ax =0, and always, ; =0and u; = [1,...,1]7/ VN
e the number of walks of length K between nodes v; and v; is equal to [AK],-J-

e the number of walks of length at most K between v; and v; is [Z,’leAk],-j
— can be used to enumerate node neighbors at distance at most K steps



Part 2:

Key ideas In
graph signal processing
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CircuLAR GRAPH

0 1 0 0 1
1 0 1 0 0
A= 1 0 1 0
0 1 0 1
1 0 - 1 0

Au, = hu, << |u;l,-1 = Afucl, (delay operator!)

1 ej27mk/N

. A= e 7N (this is DFT)
VN

= |ukl, =

A"=UAU'UAU'-- - UAU ' =UAN"U!
so a (N — 1)-degree polynomial
fA) =hA’ + A+ +hy AN = U F(A)U ™!
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EiceN-DecomposiTiION oF A GENERAL GRAPH

igli)
) e
W T3 4 5 & T g
uie)
|1| a 5 & |
i I |l‘.~u
uzin)
SRR
| &
iagln)
| 2*|‘|_|
‘I*lﬁln
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FiLTERING OF GRAPH SIGNALS

x()=Ax(t—1), vx(t—1)=[x;(t=1),x0—1),...,xy&—D]"

l.e., if N; denotes direct neighbors of node i,

xi(t)= Y xit=1)

x]ENl‘

x()=Ax(t—-1)=A"x(0), r=1,2,...

M-1
y(t) = h(t) = x(t) = Y h(k) x(t k)
k=0

M-1
y(t) = h(0)x(t) + (1) x(t=1)++ -+ H(M = 1)x(t—M+1) = Z h(k)A"™ x(0) = H(A) x(0)
k=0

-

H(A)

- but, A may not be invertible, so ‘shift’ via A cannot be undone
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FourieEr TRANSFORM OoF GRAPH SIGNALS

A=UAU", x=[x;,x...,xy]"
- eigenvector u; corresponds to eigenvalue A;- for circular graphs,

x=U""x, ie, x=Ux, x=[%,%,....5v]"
N N
= X = an [u,], and x,= Zxk [ui ],
n=1 k=1

y=HA)x=HUAU HYx=UHA)U 'x

= Uly=HAMNU 'x = $k)=hO0)A)+---+h(M -1 2(k)

N—— v
}A, X
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FiLTERING OF GRAPH SIGNALS (CONT.)

e design a graph filter h = [ho,hy,...,hy-1]' having the desired frequency
response Gy at frequency Ay, for k=0,1,...,N—-1

1. obtain GDFT of graph signal: x=U"'x
2. frequency domain filtering: y = G(A)x
3. recover the output graph signal: y = Uy

1. if N > M, solve the linear set of equations for filter impulse response h
HA) =ho+ A+ +hy =Gy, Vk=0,1,...,N—1

= V,h=G, = h=V;'G, (invertVandermonde matrix)
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LAPLACIAN SPECTRAL DomAIN

y=Lx o y@)=2x(t)—x(t—1)—x(t+1)
L=UAU"'! and 3=U'x o x=Ux

Lu=Au = wLu=Au"u=21

N
1 . 2
u'Lu = 5]20 [A]; (u(i)—u( )’ = A
l.e. eigenvectors with small eigenvalues represent low-pass components of
graph signal x

I VA< A,
H(1) = , (frequency response)
0 otherwise

M-1
y= Z h,L" x
m=0
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FouRiER ANALYSIS OF GRAPH SIGNALS

e convolution in vertex and spectral domains
e /-transform for graph signals

e Parseval’s theorem for graph signals

e shift in frequency domain

.. often not intuitive extensions, but more ‘can be considered as’

e signal shift using A or L may not be invertible

e since graph signal is non-periodic (what would a periodic extension be?),
Discrete-time Fourier Transform and not DFT should be assumed

e sampling should make the spectrum periodic

.. indicative that other different approaches should be attempted
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SMooTHING FILTERS OF GRAPH SIGNALS

e input: noisy graph signal x
e output: smoothed output graph signal y

e solution:
. 1 2 T
minJ = 5||y—x||2+ozy Ly
9
= /=0 = y=(1+2el)'x o J=(1+2A) 3
Y H(A)
e alternative formulation:
S
minJ = = lly - xll5 + ay” Ly + Sy’ Ly
——
ILyII3
- 95l o (1+2 L+2,8L2)_1x
—J = = 0%
oy’ y

e it is also possible to consider sparsity instead of smoothness
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GRAPH SAMPLING AND COMPRESSION

e represent or reconstruct graph signal from small number of its samples

K-1
X = [%(0),%(1),..., %K -1),0,...,0]" = x(n)= ch(k)uk(n)
N-K k=0

e assume M samples available at nodes ny,n,,...,n,,,, K<M <N

[ y(np) | - uo(ny)  ui(ng) - wun—i(my) || %(0)
y(n2) _| uo(n2)  wi(nz) - uy-1(n2) x(1)

Ly | [ aom) i) o) 1| k-1
y (measﬁ?ements) M (measureTnent matrix) (k)

e recovery from M > K samples
X =M"M)"'M'y = x=U[xk,0---0]"

e this procedure can be used if positions of (N — K) zeros in x are known
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GRAPH SAMPLING AND COMPRESSION (CONT.)

e neither positions nor the number of zeros in X is known
e reconstruction:

min||X|lp st y=MX
e possible solution:

1. estimate zeros and their positions as (N — K) largest values in X = M’y
2. knowing K zero positions, use previous procedure to estimate x

e signal measured at
vertices 2,3,4,5,7: y = .
[0.224,1.206,1.067,1.285,1.116]  1xw) X(0)

are (N - K) = 2 non-zero

e it is estimated that there | | | |
R
components in X = M’y T
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GRAPH SAMPLING AND COMPRESSION (CONT.)

e measurements using combining matrix C

e reconstruction: see previous methods
e can assume sampling at one vertex only

yo=I[x]n, vi=[Ax],, ..., yn_1=[A"""x],
then
0---1---0
row,(A
- :( )

i rown(./lN_l) |
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GRAPH SAMPLING AND COMPRESSION (CONT.)

e sub-sample large graph signals to reduce storage requirements and data
processing complexity

e downsampled graph to retain certain similarity to original graph
— connectivity distribution
— spectral properties

e random selection of nodes
(equi-probable, proportional
to the node degrees or
ranks) is satisfactory in very
large graphs

e random selection of
edges tends to produce
disconnected graphs

e random walk and maximum
spanning tree based

e many other methods in Incorporation of a spectral sparsification step into the graph
literature reduction. (a)-(c) Repeated largest eigenvector downsampling
and Kron reduction of a sensor network graph. (d)-(f)
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FLows oN GRAPHS

0
Ex(t) = —Lx(1)

e backward difference approximation

x(t+1)=x()=—-alx(t+1) = x@t+D)=UI+al)'x@¢),t=0,1,...

e forward difference approximation

x(t+1)—x(t) = —aLx(t) = x(t+1)=UA—-al)x(®),t=0,1,...

e minimize the smoothness of x

minx'Lx = —x'Lx=2x"L
X ax

= x(t+1)=x(t)—aLx(t)= I —aL)x(t) (steepest descent)
= Xx(t+1)=U—-alM)x(r) (spectral domain)
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BuiLbiNg GRAPH MoDELS

e what do node represent?
e when to add edges between nodes?

e obvious cases: social networks, agent networks, routers
e less obvious cases: time series data, complex systems

e challenges:
— merging/clustering nodes
— time-varying scenarios

e obvious cases: social networks, flow networks

e challenges in other cases:
— weight metric selection
— Nno edge can also mean missing data
— time-varying scenarios
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BuiLbing GrRAPH MoDELS (CONT.)

e used when mutual geographical location r of nodes matters, i.e., the
distance r,,,, = [|r, — rull>

e edge weight metrics with parametersa >0, rp>0and c>0

_ c
0] Vaum = 10

e these weights can produce exponentially weighted moving average of
neighboring nodes for linear graph model

x(t+1)=UT+W)x(1)

e any similarity metric can be considered

e total variance, correlation (Pearson, Spearman)
e binary (relationship exists/does not exist)

e learning/extrapolating relationships and weights
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LEARNING GRAPHS FROM DATA

e given measurements x;, xp, ..., Xy at N nodes, construct a graph
representing the data

e exploit smoothness of the graph signal rather than internal correlations

e data matrix X =[x1,X2,...,Xy]
e graph signal smoothness

1 1
X LX) =5 3 (W[50 = Xl = S0 (WAX),  [AX]0 = (16— 2

min r{WAX}+ah(W) st diag(W)=0, W= w!

e regularization A(W): ||[W||,, ||W|[5, logdet W
e additional constraint diag(W1) = I (weights normalization), or as objective

min tr{WAX} +ah(W) - B1"logW1 s.t. diag(W)=0, W=W"'
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LEARNING GRAPHS FROM DATA (CONT.)

e |earn the graph and de-noise the measurements
e optimization problem

min [I¥ — X3+ WAY ) +BR(W)  s.t. diag(W)=0, W=W", [AY],,,=y,- Vol

e graph signal as Gaussian-Markov random field

e optimization problem (gdet is generalized determinant) is defined as
maximum-likelihood estimation of L

maxlog gdet L —tr{CL} - ah(L) s.t. L1=0, L= L

_ T
where C is estimated covariance matrix C = ﬁ . col,-(X —X) coli(X —X)

tr{CL} o tr{XTLX}

e these methods pose no constraints on graph structure except the number of
graph nodes
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LeEARNING GRAPHS FROM DATA (CONT.)

e Qrid, tree, bipartite, multi-component, regular, densely connected etc.
e challenge is how to specify the graph structure as optimization constraint

e spectral constraints on eigenvalues or eigenvectors of L or W
AL)eS, or AW)EeS,

e algorithms for such non-convex problems were developed in literature

e |learn k clusters, i.e., 4; = --- = A; = 0, and additional constraint
k
—Srank(L)=N—-k & Z/li(L) =0
=1

e unforeseen problem: k-component graph learning generates isolated nodes
— add constraint(s) to avoid zero-degree nodes, e.g. diag(W1) =1
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LeEARNING GRAPHS FROM DATA (CONT.)

e forn=1,2,...,N, sequentially determine the edge weights W,,,
2

N
min ||x, - Z Wkl +allrow,(W)|; (LASSO minimization)
row,(W) —

m#*n 2

: 2
min|ly - Ax[}3 + e 1xI,

IS solved iteratively as
Xie1 = soft (2BA” (y - Ax) + xi.pa), k=1,2,...

where the learning step

0<B<1/2Anax), Amax iS Max eigenvalue of A'A
and (y +u, y<-u
soft(y,u) =<0, V| <u

y—u, y>u
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LeEARNING GRAPHS FROM DATA (CONT.)

e tweak tr{CL} term in objective function, e.g. majorization-minimization
iterations [Palomar et al. 2017]

k=1,2,...

1 Z col;(X)col:(X)!

tr{C"L} where C* = — ’
n < col(X)" L*col(X)

e divide data to 7 chunks, estimate graph L, for every data chunkr=1,2,...,T

e add regularization term Zthz d(L,,L,_) to objective function to maintain graph
consistency in time, e.g.

d(Lt, Lt—l) =||L, - Lr—l”%

e L, can be estimated sequentially to reduce complexity
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SPECTRAL CLUSTERING

e partition the graph in K clusters of approximately equal size
e edges between clusters should have small weights

e any clustering algorithm e.g. K-means

- graph weights W;; between nodes v;e Vandv; eV

Viuvi=V, VinVi=0 = cut(V,,V])= Z W;; (other operators: avg, min)
i€Vy,jeVy

- for K disjoint node subsets

K
UK V=V, VinVi=0Vk! = cut(Vi,....Vg) =y cut(V, Vi)
k=1

- normalization to encourage equal-size clusters

K cut(Vk,V;f)
— cut(V1,---aVK)_; |Vl
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SPECTRAL CLUSTERING (CONT.)
(case K =2)

a vieV

given Vi, leta = w/lvc, and define graph signal f(v;) = f; =
Vil l/a v;eV;

cutl V, V¢
the smoothness, f'Lf = %ZQIJ-ZI Wi (fi= fi)? = %Zlil t(|Vi| 2

= min f'Lf st f'1=0,|Ifl5=N (NP-hard problem)
1€

e graph partitioning
— graph signals often smooth within clusters
— nodal domain of fis a sub-graph where f in all nodes have the same sign

e hierarchical graph representation

e graph reduction
— replace small clusters with single node

e graph visualization
e graph coloring
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GRrAPH DOWNSAMPLING

e remove less important nodes and/or edges
— how to select those?
— e.g. account for edge weights and node degrees

e aim: reduce the graph size by half

o let u.,,x be the eigenvector of L
corresponding to eigenvalue A.x

Unax () 20
Vieep =3Vi €V 1 QUmax (i) <0 >
KN /2-largest |umax (i)

-

e note that Vi, and Vﬁeep represents
the graph cut
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RANDOM SiGNALS ON GRAPHS

e can be expressed as

X = xo +Zh1Ll

determlmstlc
\\/_/

H
where w are zero-mean uncorrelated random samples

e corresponding covariance C, = E[xxT] = HH'

o if L=UAL",then s = diag(UTC'xU) IS power spectral density vector

e w does not need to be white i.e. C,, = E[wa] #1

e consequently, U’ C,U is not a diagonal matrix
e one strategy: if C, is known, find H, so that C, = + >  x,x! and C, =
E[xxT] = HC,,H" are close in some sense assuming symmetry H = H'
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GRAPH OBSERVABILITY

e a;i(?) is edge weight between nodes i and j
e x; is weight of node i, so the internal state x(¢) = [x;(?),...,x,(®)]!
e if time-invariant, state-space description

x(t) = Ax(t)+Bu()
y@o = Cx()

... this is a linear MIMO system! X.

e a state (values of internal variables) can be obtained from finite observations
— find state trajectory x(¢) from any initial state x(0) to the current state

e strongly connected components (there is path between any two nodes)
— have to observe at least one node from each SCC

e for linear model, can use maximum matching to find minimum # sensors
— often much larger than # SCC (due to model symmetries)

e surprisingly, for non-linear model, sensors predicted by SCCs are necessary
as well as sufficient (since model symmetries are rare)
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GRAPH CONTROLABILITY

e controlability matrix D must be full rank i.e. by u w
rankD = n where n = | x| X by b
1 X aQX] a
_ 2 n—1 21 sy 2l 31
D = [B,AB,A B,...,A B] X2 x2 Yes X

e for linear networks, maximum matching again helps

il

e surprisingly, driver nodes tend to avoid hubs
— average degree of driver nodes is smaller than average degree of graph

— # driver nodes mainly determined by degree distribution

“Sparse and heterogeneous networks are harder to control than dense and
homogeneous networks.”
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GRAPH TOMOGRAPHY

e assume a graph with the weight a;; € R between nodes i and j
o let path P = {(iyi»), (ixi3),...,(iz—1iy)} from node i; to node i,
— accumulated weight along the path P is a;;;, = 2. jep dij
— In matrix notation
y=P-a+w

where rows of binary matrix P € {0, 1}">" correspond to each measured path,
a is graph adjacency vector, and m denotes the number of probes

o ifa;i, = [ljepaij we can assume model

logyilid = Z lOgClij +Ww
(i)eP
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GRAPH TOMOGRAPHY (CONT.)

e given measurements y, find minimal path matrix P to recover k weights in a
— this assumes that the graph structure is known

e the path matrix P is minimal if either the sum-length of all probing paths
considered is minimum, or if the longest among these paths is minimized

e trivial (non-minimal) design: measure all weights a;; one by one
— determining all paths of a general graph is NP-hard
— in practice, only a subset of nodes may be used for I/O or as gateways

e knowing the graph structure, and given subset of paths P and the
corresponding measurements y, recover k graph weights in a

— P may not be large enough to enable compressive sensing of a

— some weights in a may be calculated if overdetermined system (m > k)
e different strategy:

— determine weights change Aa if nominal weights a are known

y=P-(a+Aa)+w= P-a +P-Aa+w
N——

kKnown
assuming k’-sparse change vector Aa with &’ < k
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INFORMATION DIFFUSION’

e information, ideas, behaviors, epidemics, computer viruses, economic
transactions, petitions etc.
e transfer occurs in a particular random time

e from node j to i with a rate parameter a;; ~ 1/ <A;;>

A ; ol i fy s o) ;

Ay B
longer delays shorter delays
f(Aij, @) usually exponential or power-law but also multi-modal distributions
e information cascade: a set {#;}; where
A= (t;—1) ~ f(Aij,ai))

e node is activated once by the first parent

'"MG Rodriguez, Le Song, KDD tutorial, 2015,
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INFORMATION DIFFUSION (CONT.)

e given information cascades {t}},-, {tl.z},-, ... infer connection (adjacency) matrix
and rate constants a;; > 0

— a;; = 0 if no connection from i to j

e assuming independence of individual diffusion events, we can obtain and
then maximize the likelihood of observed cascades c € C

A = argmax, » log f({t¢);,A)

ceC

e can we recover completely recover A?
— number of cascades |C| needs to be large (cf. compressive sensing)

IC| ~ O(d>_, 1ogN)
where d,.x IS the maximum in-degree in a network of N nodes

ax

t

n

e find probability Pr(z, < T|A)
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INFORMATION DIFFUSION (CONT.)

Ai~fAj,ajim), m=1,2,3,...

e average rate a;; = >, @ jim Pr(m) -
«——information technology
Aji(t) ~ f(Aji, @i(T)), @;i(T) 2 0 g0
o traAlcking variations = ec?umsr L
A(7) = argmax, Z we(t)log f({t )i, A(T)) . \/B
where weights WC(TC)GC: exp(t/T) o T

(i.e. forget history more in the past) time

e difficult to identify individual cascades in observed data
— most cascades are single values (never propagates)

e solution: assume counting process (of a specific activity or event)

N =) (1) dr

where the process intensity A; o< a; has the unit [events/hour]
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INFORMATION DIFFUSION (CONT.)

e drivers external to the network

e response to activities of other users within the network

Hawkes process:

Ay

g(1):

User u »Dim.l?TTT/T TT T TTT T:
l

User u, m) Dim. 2 | l/ T

User u, m) Dim. 3 TTT

A= 2% + A0
N—— SN——
exogenous endogenous

X(O)= " au,g(t—1)

i:;<t
influence of neighbor u; on user u
memory (lifetime of the event or activity)

—e

S | T

A O
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INFORMATION DIFFUSION (CONT.)

e influence up to time T from nodes in A

N
o(A;T) = E[N(A; T)] = Z Pr(z, < T|A)

n=1

e maximization (NP-hard problem)
A" = argmax g o (A;T)

— Wwe can use a greedy algorithm to solve it or other approximate solutions,
e.g.

influence estimation
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INFORMATION DIFFUSION (CONT.)

e oObservations often incomplete, can we still find the first node in a cascade?

e need to eliminate all

unobserved events from the

maximizing it — computationally very difficult problem
— importance sampling-like strategies seem to work well

Influence Fixed One time same | Aim is maximum
maximization incentive information adoption

Activity Variable Multiple time, multiple | Many different
shaping incentive info, recurrent shaping tasks

e incentivize few users to produce a given level of overall activity
— exogenous activity — endogenous activity

e example objectives:

reach average activity E[A(f)] at time ¢ where A(f) = 1*(t) + 2°(¢)

maximize utility U(E[A(?)])

maximize activity of the least active user
maximize the total number of events in the network

likelihood before



Part 3:

Survey of problems and tasks
In graph signal processing
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PRoBLEMS IN NETWORK ScCIENCE

e community detection
e maximum clique identification
e strongly connected components

e minimum spanning tree

e maximum/perfect matching

e shortest path between a pair of nodes
e longest path in a graph (diameter)

e traveling salesman problem ﬁl
. . . . #f ! |
e drawing and visualization oy

— graph coloring
e graph search

e linear ordering of nodes (for acyclic graphs) |
— more generally, ranking and sorting of nodes (mostly static graphs)

e maximum flow/minimum cut
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PROBLEMS IN GRAPH SIGNAL PROCESSING

e graph model given a priory or learned from data

e working with directed graphs

e how to assign variables to graph

e time-varying and/or random graph structure and variables
e linear and non-linear processing of graph signals

e scalability to very large graph signals

(graph structure only)

e graph algebra
— graph fields
— addition, multiplication, modulo operations

e graph conversions and transforms
— different types of graph
— to/from other discrete structures

e graph structure measures and description
— well defined by Network Science (motifs, clustering etc.)

e graph embedding in high-dimensional vector space
— often used in machine learning tasks
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ProBLEMS IN GRAPH SIGNAL PROCESSING (CONT.)

(graph structure and variables)

e defining graph signals
— mapping variables to graph (nodes, edges, simplexes)
— learning graph from data (given type or general graph)
— graph signal «— manifold conversions

e orthonormal decomposition
— a priory basis selection or basis learned from data

e spectral (frequency domain) representation
— Fourier analysis (discrete Fourier transforms)
— wavelet transforms

e filtering
— in time and in frequency domains
— convolution, de-convolution, windowing
— designing low-pass and high-pass filters
— observability and controlability

e sampling, downsampling and compression
— lossless or near-perfect reconstruction
— graph signal tomography
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ProBLEMS IN GRAPH SIGNAL PROCESSING (CONT.)

e invariant measures
— graph signal shift in time and frequency domains

e clustering, classification, sorting, ranking samples of graph signals

e time-varying signals
— flows and diffusion on graphs (information)
— events spreading over graphs (epidemics)
— event detection from small number of observations

e random graph signals
— stationarity and ergodicity
— de-noising and smoothing
— parameter estimation from small number of observations

e image processing
e brain functional networks
e semi-supervised and deep graph learning

taking into account signal (graph) structure can greatly
improve the performance



Part 4:

Recommended readings on
graph signal processing
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Books

Cooperatlve and
Graph Signal Processing

Representation
Learning

William L. Hamilton

SyntrEsIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING

Romald J. man, Fran

Book CHAPTERS

Introduction to Graph Signal Processing

Ljuhia Stankovié, Milof Dakovié and Ervin Scjdié

Abstraet Graph signal processing deals with signals whose domain, defined by a
graph, is imepular, An overview of basic graph forms and definitions is presented
first. Spectral |Iy~|\d1nphamll~*uﬂml mext, Some simple forms of processing
signal on grophs, like Izllenn[' inihe veriex .mcl <|'\c\|r'|'l clunnm. subsampling and

i il hmstrated through umn|rlr>. inrluliu;_: Tew applscations al the end of the chapter.

1 Introdoction
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domain is nod & sed of eqquidisiant instants infimeor o set of poinis in space on 0 regular
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the time or space. The data sensing dor ted 1o other propenties of the
considered system/neiwork. For example, in many social or web related networks,
the sensing points and their connectivity are relaned wospecific ohjecs and their links,
In some phiysical processes other propertics than the space or time coond s delfine
the relation beiween points where the signal is sensed. Even for the data sensed in the
well defined time and space don the intreduction of new relations between the
ﬁcnw.in[: poinds may Pnnl.l.'c e |n\|g_hu im the analysis nnd resalt in more advinosd
dnta processing techniques,
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IN SUMMARY

e there is clearly a need to work with graph signals
— network like systems and applications
— accounting for signal structure can significantly improve the performance

e (not surprisingly) the aim is to extend signal processing to graph signals

e most techniques for graph signal processing evolved around eigen-
decomposition of W or L

e there are often several/many different approaches to accomplishing the
same thing or task in graph signal processing
— the field still appears far less mature than e.g. Network Science
— a viable strategy can be transforms of graphs «— regular signals

e distributed signal processing seems to be appealing practical alternative to
(centralized) graph signal processing



Thank you!

pavelloskot@intl.zju.edu.cn



