
Tutorial

Microservices

– Introduction, Challenges, Patterns, and Applications –

Prof. Dr. Arne Koschel (IARIA fellow)
Hochschule Hannover, University of Applied Science and Arts

Hannover, Germany

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

2

Microservices Tutorial – © Arne Koschel

Microservices – Introduction
Motivation – A common scenario for a web application

Online shop system with basic functionalities:

• Search for products (e.g. by name and/or category),

• view product details (including pictures etc.),

• purchase products (place in basket, proceed to checkout) and

• submit and view product reviews.

Typical Requirements:

• Interoperability: Support a variety of different clients
(web browser, mobile applications etc.)

• Maintainability: Enable frequent and rapid changes

• Scalability: Handle sudden increases in user activity

• Availability: Minimise downtime (= financial loss)

 Traditional Approach: Monolithic Architecture

3

Microservices Tutorial – © Arne Koschel

Microservices – Introduction
Monolithic Architecture – The traditional approach to web applications

Properties:

• Single process

• Single database

Advantages:

• Easy development
(for example, communication via
simple method calls)

• Easy deployment
(deployment of a single artefact)

• Application as a whole is scalable
(via load balancer)

4

Microservices Tutorial – © Arne Koschel

Microservices – Introduction
Monolithic Architecture – Challenges

Scenario: The shop is very successful and the project grows steadily

• Number of components and LOC increases as more features are added

• More project members are required for development, QA, design etc.

Challenges:

• Communication overhead between project members

• Decrease in development speed due to increased complexity

• Deployments (and updates) become less frequent

 Idea: Limit responsibilities of individual project members to

individual components instead of entire monolith
(e.g. by creating smaller teams).

5

Microservices Tutorial – © Arne Koschel

Microservices – Introduction
Microservice Architecture – Decomposing the Monolith

Concept: Decompose complex applications into smaller units
(usually single tasks or even subtasks)

Properties of a Microservice:

• Self-contained unit providing its on persistence layer etc.

• May be deployed to an arbitrary number of processes

• Clearly defined scope of responsibility (loose coupling; high cohesion)

• Owned by a single team
(responsible for development [and operation])

 Motto: “You build it, you run it!”

6

Microservices Tutorial – © Arne Koschel

Microservices – Introduction
Microservice Architecture – What is the difference to a SOA?

Microservices are considered a specialisation of SOA.

Both are “service-based architectures”

• Microservices introduce additional constraints to SOA:

• All services must be deployable independent from one another.

• Size and domain of a microservice are limited

(no limitations in SOA – SOA services are usually relatively coarse-grained).

• Every service runs in its own process and contains its own storage.

• No need for an ESB, services handle communication individually.

• A SOA can be comprised of or integrate with multiple microservices.

7

Microservices Tutorial – © Arne Koschel

Microservices – Introduction
Microservice Architecture – Advantages

Advantages:

• Each microservice can be deployed and scaled independently

• Ownership by a single, small team (developer, designer, [administrator] …)

reduces communication overhead among project members

• Small size & limited scope allow for easy replacement of individual services

• Rapid development lifecycle promotes continuous integration

 But: These advantages can quickly turn into challenges!

Consequence:

Microservices require strict adherence of developers to guidelines
provided by architects to prevent introduction of dependencies.

8

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition

Deployment

Technology Heterogeneity

Scalability

Communication between Microservices

Monitoring

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

9

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Decomposition – The art of dividing and decoupling

Problem with Monoliths:

• Refactoring is necessary to conform to initial architectural vision

Benefit of Microservices:

• Small enough to replace entire service in case of major changes

• Keeps code rot in check due do limited number of LOC per service

Challenges:

• Small enough, but not too small

Choosing the correct size for a microservice is important to prevent the

overhead from outweighing the benefit.

• Durable Interfaces

Replacements should not introduce changes to provided interfaces as

this would incur additional changes in other services.

10

More: See Keynote
Andreas Hausotter

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition

Deployment

Technology Heterogeneity

Scalability

Communication between Microservices

Monitoring

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

11

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Deployment – What is deployed when and how frequently?

Problem with Monoliths: Fixed deployment cycles which may lengthen over time

Benefit of Microservices:

• No fixed deployment schedule (e.g. once per month or quarter)

• Teams may deploy frequently and independently from one another

• New features and changes can be shipped more rapidly

Challenges:

• Loose Coupling: A change in one microservice should not

(or in practice very rarely) require a change in another microservice.

• Availability and Continuous Integration (CI): There must always be a fully

tested version available to all other services, while the diversity of deployed

versions should be kept low.

12

More: See Keynote
Andreas Hausotter

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition

Deployment

Technology Heterogeneity

Scalability

Communication between Microservices

Monitoring

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

13

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Technology Heterogeneity – Advantages and Challenges

Advantages of Microservices:

• Every services appears as a black box to other services.

• Teams can always use the “best tool for the job” within their own service.
(e.g. data storage paradigm, programming language, libraries, build chain)

Challenges:

• Overall complexity increases (e.g. licensing, architecture overview)

• Employees cannot easily be reassigned between teams (missing expertise)

• “Bus factor”: Can development on a microservice continue when a

developer leaves the company?

14

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Technology Heterogeneity – Advantages and Challenges

Examples

Different microservices may use fundamentally different technology stacks.
(Graphics © of their owners)

15

A B C

C#

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition

Deployment

Technology Heterogeneity

Scalability

Communication between Microservices

Monitoring

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

16

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Scalability – Independence vs. communication overhead

Advantages of Microservices:

• Each service runs in a process of its own and provides its own storage.

 Microservices can be scaled independently from each other.

• Modularity allows easy deployment of additional service instances.

Challenges:

• Services must be able to scale vertically as well as horizontally.

• Every instance must be able to answer a request, potentially introducing

communication overhead between instances.

17

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Scalability – Independence vs. communication / synchronization overhead

Scenario 1:

• All services are provided with an

equal amount of resources.

Scenario 2:

• B and C continue to share resources.

• A is provided with dedicated resources.

Scenario 3:

• B and C continue to share resources.

• Additional instances of A and C are

created with dedicated resources.

18

A B C

A B C

A B C

A C

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition

Deployment

Technology Heterogeneity

Scalability

Client-Server Integration

Communication between Microservices

Monitoring

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

19

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Communication between Microservices – Patterns and Models

Advantages of Microservices:

• Direct communication between services lifts the requirement for a centralised

enterprise service bus.

• Inter-service communication patterns can be chosen as needed.

Challenges:

• Communication between services becomes more complex:

• Will cross process and potentially even data center boundaries,

• can no longer be handled via method calls (monolith) and

• requires (potentially expensive) inter-process communication.

• Interfaces should not be too fine-grained to reduce overhead.

• Calls to other services can not be considered instantaneous and must be

handled in a non-blocking manner.

20

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Communication between Microservices – Patterns and Models

Examples of Communication Patterns:

• Request Response

• Immediate answer (e.g. via HTTP using a RESTful API)

• Simple, direct and intuitive, but potentially blocking.

• Requires polling if service A wants to keep track of the state of B

21

A B
Service
Provider

Service
Consumer

1. Request

2. Response

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Communication between Microservices – Patterns and Models

Examples of Communication Patterns:

• Publish Subscribe (Event-based communication)

• Spatial Decoupling: Arbitrary number of publishers and subscribers

• Temporal Decoupling: Messages may be delivered at any time

• Subscribers are automatically notified on new messages

• Asynchrony may increase complexity

22

A BPublisher Subscriber

1. Subscribe

2. External
Request

Event
Broker

3. Publish
Event 4. Notify

Subscribers

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition

Deployment

Technology Heterogeneity

Scalability

Client-Server Integration

Communication between Microservices

Monitoring

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 4 Summary and Conclusions

23

Microservices Tutorial – © Arne Koschel

Microservices – Tasks and Challenges
Monitoring – Keeping Track of Key Metrics

Advantages of Microservices:

• Replaceability and small scope of individual services allows for quick

reactions and precise localisation of issues.

Challenges:

• Distributed logs etc. need to be collected and aggregated

• Events pertaining to the same, initiating request need to be correlated

across all APIs to trace back downstream errors (e.g. using a shared request id).

• Must keep track of various metrics and key performance indicators (KPI)

• System Level: CPU load, memory consumption, I/O operations, …

• Application Level: Response times, error rates, …

• Reliable and fail-safe: Monitoring blackouts are a worst-case scenario, as

there is no way to tell, how the entire system behaves during that time.

24

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Circuit Breakers

Chaos Testing

Canary Environments

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

25

Microservices Tutorial – © Arne Koschel

Microservices – Patterns for Resilience and QoS
Circuit Breakers – Preventing Failures from Cascading

Problem:

Performance issues of a downstream service can impact upstream services.

Idea:

• Monitor services to detect issues and potential failure as early as possible

• Provide fail-fast or fall back mechanism to prevent upstream cascades

26

Based on: [Newman2015]

Service boundary

Calling
Code Calling

Code

Down-
stream
Service

Calls start
failing or
time out

Service boundary

Calling
Code Calling

Code

Down-
stream
Service

Check for
recovery
of service

Service boundary

Calling
Code Calling

Code

Down-
stream
Service

Reset
broken
circuit

Service boundary

Calling
Code Calling

Code

Down-
stream
Service

Requests
fail fast

Microservices Tutorial – © Arne Koschel

Microservices – Patterns for Resilience and QoS
Circuit Breakers – Example: Netflix OSS – Hystrix

Hystrix – An OSS resilience solution for microservices
(Note: Hystrix is limited to Java 8; Resillience4J is another more recent option)

• Wraps calls to dependencies to track successes, failures, timeouts, …

• Provides a fail fast mechanism to prevent blocking requests during high load

• Trips circuit-breakers to stop all requests to a particular service
(triggered e.g. when error percentage reaches threshold)

• Executes fall-back logic in case of failed requests etc.

 Goal: Prevent failures or high latencies in individual services from cascading

to other parts of the system: Fail fast, degrade gracefully (if possible).

27

Source: https://github.com/Netflix/Hystrix

Microservices Tutorial – © Arne Koschel

Microservices – Patterns for Resilience and QoS
Circuit Breakers – Example: Netflix OSS – Hystrix

Hystrix Dashboard – Key Performance Indicators

28

Source: https://github.com/Netflix/Hystrix

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Circuit Breakers

Chaos Testing

Canary Environments

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

29

Microservices Tutorial – © Arne Koschel

Microservices – Patterns for Resilience and QoS
Chaos Testing – Because Chaos is Closer to Reality

Problem:

On microservice level, code tests can identify potential failures and load tests can

point out scalability limitations, but neither tests the entire ecosystem.

 Most production failures are related to issues elsewhere in the ecosystem.

Idea:

• Push microservices to fail in production:

Make it fail all of the time and in every way possible.

• Run scheduled tests as well as random tests:

Catch developers off guard as well as in prepared states of readiness.

• Provide chaos testing as a service:

Dedicated team, no ad hoc cooperation across multiple teams.

• Break every microservice and every piece of infrastructure (multiple times!).

30

Based on: [Fowler2017]

Microservices Tutorial – © Arne Koschel

Example:

• Block individual APIs, stop single services, introduce network latency, break

entire hosts, disconnect entire regions or datacentres …

 Even though it is called Chaos Testing, it has to be well controlled to prevent it

from bringing down the entire ecosystem or go rogue!

Microservices – Patterns for Resilience and QoS
Chaos Testing – Because Chaos is Closer to Reality

31

A

B

C

Datacentre
eu-west1

Host 1

Host 2

A

B

C

Datacentre
eu-west2

Host 3

Host 4
Interrupted by

occasional
timeouts

No connectivity
between Host 1

and Host 2

API of service
A used by C is

unavailable

Service A is
down or not
responding

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Circuit Breakers

Chaos Testing

Canary Environments

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

32

Microservices Tutorial – © Arne Koschel

Microservices – Patterns for Resilience and QoS
Canary Environments – The Last Stage before Full Release

Problem:

Even after passing all tests, actual production traffic may still cause unexpected

failure, which might brings down the entire production environment.

Idea:

• Do not switch the entire production traffic over to the new version at once.

• Deploy new versions to a Canary Environment, which servers only about

5 – 10 % of the production traffic.

• Once the canary survived an entire traffic cycle (interval after which traffic

patterns repeat), deploy it to the entire production platform.

 If a canary fails, only a small number of clients will be affected and the

deployment can be rolled back easily.

33

Based on: [Fowler2017]

Microservices Tutorial – © Arne Koschel

Example:

• Rollout of a new version for service A to the canary environment

• New canary environment only serves a small portion of production traffic

Microservices – Patterns for Resilience and QoS
Canary Environments – The Last Stage before Full Release

34

A BC

Production
Environment

A/v2 BC

Production
Environment

A/v2 BC

Canary
Environment

A BC

Production
Environment

Canary died (failed) Canary survived

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Service Granularity and Costs

Little Case Study

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

35

Microservices Tutorial – © Arne Koschel

Microservices – Applications and Examples
Service Granularity – Software Company MGDIS SA

36

Cost-based definition of service granularity

Source: [Gouigoux2017]

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Service Granularity

Case Study

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

37

Microservices Tutorial – © Arne Koschel

Microservices – Applications and Examples
Case Study – Danske Bank

38

Source: [Dragoni2017]

Foreign Exchange (forex, FX):

• Exchange of one currency for another

or the conversion of one currency into

another currency.

• Encompasses the conversion of

currencies at an airport kiosk to pay-

ments made by corporations, financial

institutions and governments.

• Largest financial market in the world

Danske Bank FX System

• Mission critical system of the Danske Bank, implements FX

• Gateway between the international markets and the Danske Bank clients

Microservices Tutorial – © Arne Koschel

Microservices – Applications and Examples
Case Study – Danske Bank

39

Source: [Dragoni2017]

Problems with the FX System system:

• Large Components with little cohesion and

tight coupling

• Multiple communication and integration

paradigms (RPC, messaging)

• Complex and manual deployment

• No global monitoring and logging

• Technology dependencies (MS .NET)

 Great expense with respect to maintenance, quality assurance, and

deployment

Idea:

Migration of the FX system from a monolithic to a microservice architecture.

Microservices Tutorial – © Arne Koschel

Microservices – Applications and Examples
Case Study – Danske Bank

40

Source: [Dragoni2017]

Approach:

• Shift business logic in dedicated

services

• Provide “foundation services” for

system management tasks

• Provide infrastructure services

• Use Docker and Docker Swarm

for deployment, load balancing,

and fail over

• Introduce Continuous

Integration

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solution Examples

Spring Cloud

Netflix OSS

Chapter 6 Summary and Conclusions

41

Microservices Tutorial – © Arne Koschel

Microservices – Technology Solutions
Spring cloud – Overview of an Ecosystem

42

Source: : https://jaxenter.de/cloud-native-anwendungen-42976

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Spring Boot

Netflix OSS

Chapter 6 Summary and Conclusions

43

Microservices Tutorial – © Arne Koschel

Microservices – Technology Solutions
Netflix OSS – Overview of an Ecosystem

44

Source: https://netflix.github.io

Netflix has open-sourced a great number of their tools and services.

Some examples taken from their open-source ecosystem:

Runtime
Services &
Libraries

Archaius

Eureka

Hystrix

Zuul

Build and
Delivery Tools

Nebula

Animator

Spinnaker

Insight
Reliability &
Performance

Atlas

Chaos Monkey

Edda

Spectator

Vector

Other Areas

Security

User Interface

Data Persistence

Content Encoding

Big Data

Microservices Tutorial – © Arne Koschel

Microservices – Technology Solutions
Netflix OSS – Zuul: The Edge Service – Component Overview

45

Source: http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html

Resiliency/Monitoring

Routing

Monitoring

Registry/Discovery

Hystrix

Ribbon

Turbine

Eureka

Microservices Tutorial – © Arne Koschel

Microservices – Technology Solutions
Netflix OSS – Zuul: The Edge Service

Zuul – The Gatekeeper

• Provides various filters to enable dynamic routing,

monitoring, resiliency and security.

• Uses a number of other services to perform

certain tasks, e.g.:

• Hystrix – Real time metrics and resilience

• Ribbon – Routing and load balancing

• Eureka – Service and instance location

• Turbine – Server-Sent Event (SSE) stream aggregation

• Archaius – Thread-safe configuration management

46

Source: Ghost Busters (Columbia Pictures 1984)

Source: http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html

Microservices Tutorial – © Arne Koschel

Microservices – Technology Solutions
Netflix OSS – Example “Eureka”: Service and Instance Discovery

Eureka – The Service Registry

• Used to locate services in an AWS cloud environment

• Additional load balancing and failover mechanism for middle-tier servers

• Automated service removal via registration renewal heartbeat

47

Region cluster with
zone instances

Zone registry
and services

Source: https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Inter zone
lookups and
remote calls

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5b Microservices: Hs Hannover Examples

Small Case Studies, Demo

Chapter 6 Summary and Conclusions

48

Microservices Tutorial – © Arne Koschel

Project with Partner Companies:

Microservices for Insurance Partners

49

Source: [Koschel2019]

Microservices Tutorial – © Arne Koschel

eduDScloud – Microservices Lab

50

Source: [Schöner2018]

Microservices Tutorial – © Arne Koschel

More HsH Projects

• Service-based Architecture (SOA +

Microservices) for a pmCHP

supervision system

• Microservices for parallel matrix

multiplication, e.g., within car2car

communication scenarios

51

Source: [Pump2018] Source: [Zuch2018]

Microservices Tutorial – © Arne Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

52

Microservices Tutorial – © Arne Koschel

Microservices – Summary and Conclusions

• The microservices paradigm is a new promising approach in

provisioning software:

• Small services, self-contained, high cohesion and loose coupling

• Runs in a separate process

• Maybe deployed and scaled independently from each other

• Owned by a single team – “You build it, you run it”

• Continuous integration – continuous delivery (CICD)

• Efficient OSS frameworks for development & delivery are available

• Spring Boot / Cloud, Netflix OSS, Docker, Kubernetes, Istio, Prometheus, …

• BUT: Still quite high rate of tool / tool combination changes

• Some success stories: Amazon, Danske Bank, Google, Netflix, Otto,...

• Is the microservices paradigm just a hype – or is it the silver bullet,

which will solve most problems in the software industry – we will see ...

53

Microservices Tutorial – © Arne Koschel

References & Additional Reading

54

[Brooks1995]

F. Brooks, Jr, The mythical man-month: essays on software engineering. Addison-Wesley, 1995
[Dragoni2017]

N. Dragoni, S. Dustdar, S. Larsen, M. Mazzara, “Microservices: Migration of a mission critical system”, arXiv preprint, 2017
[Eugster2003]

P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of publish/subscribe”, in ACM Computing
Surveys, vol. 35, no. 2, June 2003, pp. 114–131
[Fowler2016]

S. J. Fowler, “Production-Ready Microservices – Building Standardized Systems Across an Engineering Organization”,
Sebastopol, CA, O’Reilly 2016
[Gouigoux2017]

J. P. Gouigoux, D. Tamzalit, “From monolith to microservices“, in: IEEE Intl. Conf. Software Architecture, Workshops, 2017
[Koschel2019]
A. Koschel, A. Hausotter, M. Lange, and S. Gottwald, “Keep it in Sync! Consistency Approaches for Microservices - An
Insurance Case Study”, in Proc. 11th SERVICE COMPUTATION 2018, IARIA, 2019.
[Newman2015]

S. Newman, “Building Microservices – Designing Fine-Grained Systems”, Sebastopol, CA, O’Reilly, 2015
[Pump2018]
R. Pump, A. Koschel, and V. Ahlers, “On Microservices in Smart Grid Capable pmCHP,” in Proc. 10th SERVICE
COMPUTATION 2018, Barcelona, Spain. IARIA, 2018.
[Schöner2018]
D. Schöner, A. Koschel, and F. Heine, “Teaching Microservices in the Private Cloud by Example of the eduDScloud,” in
Proc. 10th SERVICE COMPUTATION 2018, Barcelona, Spain. IARIA, 2018.
[Thönes2016]

J. Thönes, “Microservices”, IEEE Software, January/February 2015
[Wolff2016]

E. Wolff, “Microservices – Grundlagen flexibler Softwarearchitekturen”, Heidelberg, dpunkt.verlag, 2016
[Zuch2018]
M. Zuch, A. Hausotter, and A. Koschel, “Handling matrix calculations with microservices within scenarios of modern
mobility,” in Proc. 10th SERVICE COMPUTATION 2018, Barcelona, Spain. IARIA, 2018.

Microservices Tutorial – © Arne Koschel 55

Arne Koschel
University of Applied Science and Arts

Hannover, Germany

Thanks for listening! 

