
Model-driven Microservice Development
— Applying Domain Driven Design (DDD) to

Microservices Architecture —

Service Computation 2021
April 18 – 22, 2021 – Porto, Portugal

Andreas Hausotter
Faculty of Business and Computer Science

University of Applied Sciences and Arts Hannover
Ricklinger Stadtweg 120 30459 Hannover

andreas.hausotter@hs-hannover.de

Keynote Speech on

Keynote Speaker

In 1996 he was appointed professor of operating systems, networking and database systems at the University of Applied
Sciences and Arts, Hanover. He has been retired since March 2018.

From the beginning he was involved in several research projects in cooperation with industry partners. During his research
semester he developed a Java EE / EJB application framework. Based on this framework a web-based simulation software for
securities trading was implemented by his research group to train the apprentices of the industry partner.

In 2005, the Competence Center IT & Management (CC_ITM) was founded in cooperation with industry partners. Different
ambitious research projects have since then been carried out in the context of service-computing, microservices, cloud
computing, business process management, and business rules management.

Dr. ANDREAS HAUSOTTER is a professor emeritus for distributed information systems and database
systems at the University for Applied Sciences and Arts, Hanover, Germany, Faculty of Business and
Computer Science. His area of specialization comprises service computing – including service-oriented
Architectures (SOA) and microservices – Java EE, webservices, distributed information systems, business
process management, business rules management, and information modeling.

In 1979 he received his PhD in mathematics at Kiel University, Faculty of Mathematics and Natural
Sciences. After graduation he started his career with KRUPP ATLAS ELEKTRONIK, Bremen, as a systems
analyst and systems programmer in the area of real time processing. In 1984 he was hired as systems
engineer and group manager SNA Communications for NIXDORF COMPUTER, Paderborn. After that,
he worked for HAAS CONSULT, Hanover, as a systems engineer and product manager for traffic
guidance systems.

 Competence Center Information Technology & Management (CC_ITM)

 Institute at the University of Applied Sciences and Arts, Hannover

 Founded in 2005 by colleagues from the departments of Business Information
Systems and Computer Science

 Members: Faculty staff, industry partners (practitioners) of different areas of
businesses

 Main objective

 Knowledge transfer between university and industry

 Research topics

 Management of information processing

 Service computing, including Microservices, Service-oriented
Architectures (SOA), Business Process Management (BPM), Business Rules
Management (BRM)

 Cloud Computing

CC_ITM @ HsH

4
4Keynote: Model-driven Microservice Development – Service Computation 2021

 Introduction

 Basic Concepts

 Building Blocks of a Model Driven Design

 Strategic Design

 Domain Driven Design & Microservices

 Example

 References

Outline

5
5Keynote: Model-driven Microservice Development – Service Computation 2021

 Models [in general]

 Abstractions of ‘real’ world problems

 Ignore irrelevant details, focus on the relevant ones

 Help us to understand a complex problem and its
potential solutions

 Different concepts / notations are used to highlight
various perspectives or views of a system

 Examples of modeling notations: UML (Use Case, Class, Component, Activ-
ity), Code (Java, ...)

 (Model) Transformation
 Conversion of one model in another model with distinct perspectives and

levels of abstraction

 Examples: Analysis Model Design Model, Design Model Code → →

Introduction

What is Model-Driven Development? (1/2)

6
6Keynote: Model-driven Microservice Development – Service Computation 2021

 Model Driven Development (MDD)

 Category of software development approaches, based on models, model-
ing and model transformation

 Models are successively transformed into more specific and detailed ones
by applying transformation rules.

 Benefits of the MDD approach

 Better understanding of the problem space

 Models provide a unique lingua franca between software engineer.

 Transformation process may be supported by software tools.

 Challenges of the MDD approach

 Software quality and implementation effort strongly depend on the model
quality which is influenced by characteristics like abstraction, understand-
ability, accuracy.

Introduction

What is Model-Driven Development? (2/2)

7
7Keynote: Model-driven Microservice Development – Service Computation 2021

Introduction

Examples of Model Driven Development

 Model Driven Architecture (MDA) - OMG
 MDD approach, based on a set of

standards how to define a set of
models, notations, and transformation
rules

 Objective: Automatically generate
platform-specific code from abstract
models

 Standards: Unified Modeling Lan-
guage (UML), Meta Object Facility (MOF), ...

 Domain Driven Design – Evans, 2004ased

 Model-driven design approach, focuses on the application domain as pri-
mary drivers for architecture design

 Collaborative modeling of domain experts and software engineers.

Layers and Transformations
of MDA. Source: [BeBoEd98]

8
8Keynote: Model-driven Microservice Development – Service Computation 2021

Introduction

What is Domain Driven Design?

 Domain Driven Design (DDD)
 Approach to software development (Eric Evans, 2004 **))

 Focuses on the application domain, its concepts and their
relationships as primary drivers for architecture design.

 Core principles of DDD

 Capturing relevant domain knowledge in →Domain Models

 Collaborative modeling of domain experts and software
engineers

 Aligning model and implementation and continuous model refactoring

 Promoting communication between domain experts and software engineer-
ing by jointly defining a shared →Ubiquitous Language.

9
9Keynote: Model-driven Microservice Development – Service Computation 2021

 Mastering complexity

 Make large software products with complex
business logic manageable

 Build correct, understandable and maintain-
able software systems within time and bud-
get.

 Bridging the gap between user and software
engineers

 Try to understand what the software is ex-
pected to do

 Meet the customer’s needs and expecta-
tions.

Introduction

DDD Goals

Source: Geek&Poke, http://geek-and-po-
ke.com/geekandpoke

10
10Keynote: Model-driven Microservice Development – Service Computation 2021

 Domain Driven Design is an approach to develop complex software systems,
applying the following principles:

 Focus on the →Core Domain.

 Explore models in a creative collaboration of domain experts and software
engineers.

 Speak a →Ubiquitous Language within an explicitly →Bounded Context.

 Main effort in DDD focuses on ...

 … trying to understand what the user wants to do

 … modeling his (domain) knowledge

Basic Conceps

The DDD approach

11
11Keynote: Model-driven Microservice Development – Service Computation 2021

 Context
 The area in which a word or statement appears,

thereby determining its meaning.

 Statements about a model can only be under-
stood in a context.

 Bounded Context

 Description of a boundary within which a particu-
lar model is defined and applicable

 Typically a software subsystem or the work of a
particular team.

 In DDD for Microservice Architectures, every
Bounded Context is mapped to one microservice.

Basic Conceps

Context and Bounded Context

Source: Geek&Poke, http://geek-and-
poke.com/geekandpoke

12
12Keynote: Model-driven Microservice Development – Service Computation 2021

 Domain
 Sphere of knowledge, influence, or activity

 Subject area, to which a user applies is the domain of the software

 The Core Domain comprises the most valuable concepts of the domain.

 Example ‘Online Banking’

 Core Domain comprises the use cases: Login/Logout, Check Account Bal-
ance, Make a Funds Transfer, Display Turnovers

 Use cases, not subject of the Core Domain: Send a Message to the Banking
Institution, Make an Appointment with a Bank Consultant, ...

Basic Conceps

What does ‘Domain’ mean?

13
13Keynote: Model-driven Microservice Development – Service Computation 2021

 Ubiquitious Language
 Language, shared between all participants, i.e. Users / Domain Experts,

Software Engineers

 Understood by all participants

 Uses business-oriented terms, not technical-oriented terms

 Strictly adhere to the Ubiquitous Language in ...

 … discussions and communications

 … documents

 … the models, code (e.g. class names, attribute names, …).

 A glossary should comprise all terms used.

Basic Conceps

Using a Common Language (1/2)

14
14Keynote: Model-driven Microservice Development – Service Computation 2021

 The Domain Expert must double-check each term defined

 Do I understand the term?

 Does the definition express what I think?

 Can I unambiguously express my problem with it?

 The Developer must double-check each term defined

 Is the term unambiguous, consistent, well-defined, …?

 Is it possible to write code for it?

Basic Conceps

Using a Common Language (2/2)

15
15Keynote: Model-driven Microservice Development – Service Computation 2021

 Domain Model

 System of abstractions

 Describes selected and relevant aspects of a domain

 Can be used to solve problems related to that domain.

 Requirements for Domain Models

 Created in close collaboration between Domain Experts and Developers

 Not internal to the developers

 Avoid technical terms and concepts

 Must be readable and understandable for Developers as well as Domain
Experts.

Basic Conceps

Creating a Domain Model (1/2)

16
16Keynote: Model-driven Microservice Development – Service Computation 2021

 Domain Models are preferably represented by UML Class diagrams (Evans)

 Named classes with attributes and methods

 Associations, usually non-navi-
gable

 Multiplicities

 Constraints, e.g. in the form of
notes

 Use any other suitable notation

 Plain text

 Free-hand drawings

 Documented code, e.g. JavaDoc

Basic Conceps

Creating a Domain Model (2/2)

Source: Geek&Poke, http://geek-and-poke.com/ge-
ekandpoke

17
17Keynote: Model-driven Microservice Development – Service Computation 2021

 Domain Driven Design

 is NOT a software project management
methodology

 But requires some agile software develop-
ment principles

 Goes well with Scrum, XP, ...

 Won’t work with ‘classical’ project man-
agement methodologies like Waterfall, Spi-
ral, ...

Basic Conceps

DDD and Agile Software Project Management

Source: Geek&Poke, http://geek-and-po-
ke.com/geekandpoke

18
18Keynote: Model-driven Microservice Development – Service Computation 2021

 Interaction

 Direct and frequent discussion ...

 … between Domain Experts and Software Engineers

 … during the project’s lifecycle

 Iteration

 Language and domain model evolve during design and implementation

… Unclear semantics, missing concepts?
… Implementation or performance problems?
… Technical or functional refactoring required?

 Discuss all problems above with the Domain Experts

 Requires →Continuous Integration

Basic Conceps

DDD and Agile Principles

19
19Keynote: Model-driven Microservice Development – Service Computation 2021

 Continuous Integration
 Merge, build, and test (unit, integration, ...)

 Test automation is highly recommended.

 Overall Goal

 At any time, Ubiquitous Language, Domain Model, Model-driven Design and
Code must match each other.

Basic Conceps

DDD and Agile Principles

20
20Keynote: Model-driven Microservice Development – Service Computation 2021

 Domain Driven Design specifies a variety of DDD Patterns to refine the structural
Domain Model for Model-driven Design

 Layered Architecture: Software structure

 Entity: Object with identity

 Value Object: Values without an identity

 Aggregate: Combines an Entity with other Entities and / or Value Objects

 Factory: Generate Aggregates

 Repository: Stores Entities and Aggregates persistently

 Service: Functionality which is not assignable to a single Entity

 Module: Structures the model

Building Blocks of a Model Driven Design

DDD Patterns

21
21Keynote: Model-driven Microservice Development – Service Computation 2021

 Layered Architecture
 Apply the Design Pattern ‘Layers’ to isolate

the Domain Model from the infrastructure, the
user interface and even the application logic.

 DDD Layers

 Presentation Layer – User Interface

 Application Layer – Coordination and client
session management

 Domain Layer – Business data and business
logic

 Infrastructure Layer – Persistence, Communi-
cation ...

Building Blocks of a Model Driven Design

Layered Architecture – Software architecture

Source: Geek&Poke, http://geek-and-po-
ke.com/geekandpoke

22
22Keynote: Model-driven Microservice Development – Service Computation 2021

 Entity
 Instances are distinguishable from others by a domain-specific identity

 The instance is NOT defined by its attribute values

 The instance has a state and a life cycle

 Has a behavior, specified by its methods

 Examples

 Employee

 Contract

 Bank Account

Building Blocks of a Model Driven Design

Entity – Object with identity

Using the UML stereotypes <<En-
tity>> and <<DefinesIden-
tity>> to express that Bank Ac-
count conforms to the Entity pat-
tern.

23
23Keynote: Model-driven Microservice Development – Service Computation 2021

 Value Object
 An instance represent values or properties.

 An instance is defined by its attribute values.

 An instance is immutable.

 Has no domain-specific identity.

 Examples

 Color

 Temperature

 Customer Address

Building Blocks of a Model Driven Design

Value Object – Values without an identity

Using the UML stereotype <<Val-
ueObject>> to express that Cus-
tomer Address conforms to the
Value Object pattern.

24
24Keynote: Model-driven Microservice Development – Service Computation 2021

 Aggregate
 Cluster of associated Entities and Value Objects

 Members can only be accessed by referencing its →Aggregate Root

 Examples

 Car: clusters engine + powertrain + tires + ...

 Banking Institution + Company Address

Building Blocks of a Model Driven Design

Aggregate – Combines Entities or Value Objects (1/2)

Using the UML stereotype <<Ag-
gregateRoute>> to express that
Banking Institution conforms
to the Aggregate Root pattern.

Using the UML stereotype <<AggregatePart>> to
express that Company Address conforms to the
Aggregate Part pattern.

25
25Keynote: Model-driven Microservice Development – Service Computation 2021

 Aggregate Root
 Topmost Entity, representing the Aggregate

 Is the owner of all objects in the Aggregate

 Is the object that gives the Aggregate its identity

 Is the only object whose identity is visible from outside the Aggregate

 Is the only object whose methods can be invoked from outside the aggre-
gate

Building Blocks of a Model Driven Design

Aggregate – Combines Entities or Value Objects (2/2)

Using the UML stereotype <<AggregateRoute>>
to express that Banking Institution conforms
to the Aggregate Root pattern.

26
26Keynote: Model-driven Microservice Development – Service Computation 2021

Building Blocks of a Model Driven Design

Repository – Stores Entities and Aggregates persistently

 Repository
 Supports access to persistent objects

 Provides operations that perform instance selection based on search criteria

 Typical operations: add, remove, find, list

 Examples

 Car Repository

 Contract
Repository

 Bank Account
Repository

Using the UML stereotype
<<Repository>> to express that
Bank Account Repository con-
forms to the Repository pattern.

27
27Keynote: Model-driven Microservice Development – Service Computation 2021

Building Blocks of a Model Driven Design

Service – Functionality which is not assignable to a single Entity

 Service
 Provides functionality that is not in the responsibility of one Entity or Value

Object resp.

 Business processes or business rules are typically provided as Services

 Example

 ‘Funds transfer’

Using the UML stereotype <<Service>> to ex-
press that Business Service conforms to the
Service pattern.

28
28Keynote: Model-driven Microservice Development – Service Computation 2021

 Context Map

 Models the different Bounded Contexts, the ‘contact points’ and the inter-
action based on patterns (see below).

 DDD defines six Patterns of Interaction

 Shared Kernel, Customer /
Supplier, Open Host Service,
Anticorruption Layer, Conformist,
and Separate Ways

 The goal of the strategic patterns is
to manage the tradeoff between

 Level of integration of functionality

 Communication needs between the teams responsible for their Bounded
Context.

Strategic Design

Interaction between Bounded Contexts

Source: [Evans04]

29
29Keynote: Model-driven Microservice Development – Service Computation 2021

Source: Own representation, based on [Evans04]

Strategic Design

Patterns of Interaction (1/8)

Communication needs

Le
ve

l o
f i

n
te

g
ra

ti o
n

Separate Ways Conformist

Anticorruption
Layer

Customer /
Supplier

Open Host
Service

Shared
Kernel

Single Bounded
Context

 Tradeoff between communication needs and level of integration

30
30Keynote: Model-driven Microservice Development – Service Computation 2021

Source: [Evans04]

Strategic Design

Patterns of Interaction (2/8)

 Shared Kernel
 Subset of the domain model and code

is shared between bounded contexts

 Motivation

 Teams do not have the skill or organizational
backing to perform continuous integration.

 Benefits

 Reduction of duplicated code

 Challenges

 Both teams may modify the shared kernel, so ...

 … Teams must agree on any changes

 … the code has to be merged and tested as soon as possible.

31
31Keynote: Model-driven Microservice Development – Service Computation 2021

Strategic Design

Patterns of Interaction (3/8)

 Customer / Supplier
 One subsystem (customer) depends on the other (supplier).

 The supplier offers a domain model to the customer.

 Motivation

 Customer-Supplier relationship between subsystems.

 Benefits

 Reduction of development effort.

 Challenges

 The customer team should present their requirements to the supplier team –
the supplier team should schedule the tasks accordingly.

 The interface between the subsystems must be carefully specified.

 Development of acceptance tests for interface validation.

32
32Keynote: Model-driven Microservice Development – Service Computation 2021

Strategic Design

Patterns of Interaction (4/8)

 Open Host Service
 Many systems depend on one external system.

 The external system acts as a provider of services – an open protocol gives
access as a set of services.

 Motivation

 An external subsystem is used by several client systems.

 Benefits

 Prevents from providing a translation layer per client system (see pattern
Customer – Supplier).

 Challenges

 A subsystem may have special requirement to access the external system.

 To handle new integration requirements may be complex and costly.

33
33Keynote: Model-driven Microservice Development – Service Computation 2021

Strategic Design

Patterns of Interaction (5/8)

 Anticorruption Layer
 Create a layer between the client model and the external one (see below).

 The layer is a ‘natural part’ of the client – it uses concepts and actions that
are familiar to the client model.

 The layer interacts with the external model using its concepts and actions.

 Motivation

 The system has to interact with an external application, i.e. a legacy system.

 The external application’s model is confused and hard to work with.

 Benefits

 Prevents the client model to be altered by the external one.

 Challenges

 Implementation of an anticorruption layer may be complex and costly.

34
34Keynote: Model-driven Microservice Development – Service Computation 2021

Strategic Design

Patterns of Interaction (6/8)

Facade F1 acts as a
Service provide to
the client system..

The Translator per-
forms data and
object conversion.

The Adapter wraps
the behaviour of
the external system.

 Building blocks of the Anticorruption Layer

Source: [MarAvr07]

35
35Keynote: Model-driven Microservice Development – Service Computation 2021

Strategic Design

Patterns of Interaction (7/8)

 Conformist
 One subsystem (customer) depends on the other (supplier).

 The supplier offers a domain model to the customer - the customer accepts
the supplier’s model, conforming entirely to it.

 Motivation

 Customer-Supplier relationship between subsystems, but the supplier team
has no motivation to consider the customer’s requirements.

 Benefits

 Reduction of development effort.

 Challenges

 The customer must accept the supplier’s model in any case.

 Development of acceptance tests for interface validation.

36
36Keynote: Model-driven Microservice Development – Service Computation 2021

Strategic Design

Patterns of Interaction (8/8)

 Separate Ways
 The bounded contexts and their models are created independently from

each other.

 Motivation

 An application is to be built of smaller subsystems which have only little in
common from a modeling perspective.

 Integration of the bounded contexts would introduce too much effort.

 Benefits

 Only little integration effort – the subsystems share just a common thin GUI
which acts as a portal.

 Drawbacks

 To integrate the independently developed subsystems is a challenge.

37
37Keynote: Model-driven Microservice Development – Service Computation 2021

Domain Driven Design & Microservices

Why is DDD Relevant to the Design of Microservice Architectures?

 Microservices
 Architectural style for distributed, service-based systems

 Applications composed by a great number of loosely coupled small services

 Services implement a set of coherent business features.

 Services are designed and developed by autonomous teams, largely inde-
pendent from each other.

 DDD

 Provides various modeling patterns and techniques for the identification of
domain concepts and their encapsulation

 The concepts are characterized by high coherence within conceptual
boundaries.

 DDD might serve as a solid foundation for service decomposition.

38
38Keynote: Model-driven Microservice Development – Service Computation 2021

Domain Driven Design & Microservices

Approach

 Deduction of Microservices

 Each Bounded Context is mapped to one single microservice.

 Interaction between microservices

 Based on one of the DDD patterns of interaction, e.g. ...

 Anticorruption Layer: Associations between different Bounded Contexts are
mapped to service interfaces, through which shared objects are ex-
changed.

 Challenges*)

 Missing information, necessary for the deduction of microservices, e.g. inter-
faces, operations, endpoints, protocols, message formats.

 Domain modeling across distributed autonomous microservice teams.

39
39Keynote: Model-driven Microservice Development – Service Computation 2021

Example

Online Banking – Use Cases

 The application provides several fea-
tures for maintaining a bank account

 ‘Funds transfer’

 User enters 2 account numbers and
an amount of money and initiates
the transfer.

 To make the example manageable …

 … the design is kept as simple as
possible (is NOT realistic!)

 … major technical features are
omitted.

40
40Keynote: Model-driven Microservice Development – Service Computation 2021

Example

Online Banking – Sequence Diagram

41
41Keynote: Model-driven Microservice Development – Service Computation 2021

Example

Online Banking – Layered Architecture

The domain layer, not the appli-
cation layer is responsible for en-
suring business rules, such as the
invariance of amount sums.

42
42Keynote: Model-driven Microservice Development – Service Computation 2021

Example

Online Banking – Structural Domain Model

 Structural Domain Models are preferably represented by UML Class diagrams
(Evans)

 Named classes

 Attributes and
methods

 Associations
(normally
non-navigable)

 Multiplicities

 Constraints
(e.g. in the form of notes)

43
43Keynote: Model-driven Microservice Development – Service Computation 2021

Example

Online Banking – Model-driven Design

 The Structural Domain Model is refined by applying additional DDD patterns.

44
44Keynote: Model-driven Microservice Development – Service Computation 2021

Example

Online Banking – Domain Driven Design for Microservices (1/2)

 Deduction of Microservices

 Each Bounded
Context is mapped
to one single micro-
service.

 Associations bet-
ween different
Bounded Contexts
are mapped to
service interfaces,
through which
shared objects
are exchanged.

45
45Keynote: Model-driven Microservice Development – Service Computation 2021

Example

Online Banking – Domain Driven Design for Microservices (2/2)

46
46Keynote: Model-driven Microservice Development – Service Computation 2021

References

BeRaSV18 Betts, T., and Rayner, Paul (2018), Domain-Driven Design in Practice, InfoQ
eMag, no 65.

BeBoEd98 S. Beydeda, M. Book, and V. G. (Eds.) (1998), Model-driven Software Devel-
opment. Springer, Berlin and Heidelberg.

Evans04 Evans, E. (2004), Domain-driven design: tackling complexity in the heart of
software, Addison-Wesley Professional, Upper Saddle River et al.

Evans15 Evans, E. (2015), Domain Driven Design Reference - Definitions and Pattern ‐
Summaries, Domain Language, Inc.

KaetPat08
S. Kätker and S. Patig (2008), Model-Driven Development for Service-Ori-
ented Architectures in Practice, in: PIK Praxis der Informationsverarbeitung
und Kommunikation, vol. 31 (2008) 4, pp. 210–217.

Kusche13 Kusche, K. (2013), Domain Driven Design, WWW: https://www.compu-
terix.info/archiv.html, accessed 18.08.2019.

MarAvr07 Marinescu, F., and Avram, A. (2007), Domain-driven design Quickly. InfoQ.-
com.

RaSoSa18
Rademacher, F., Sorgalla, J., and Sachweh, S. (2018), Challenges of Domain-
Driven Microservice Design: A Model-Driven Perspective, in: IEEE Software,
vol 35, no 3, p. 36 - 43.

47
47Keynote: Model-driven Microservice Development – Service Computation 2021

References

RaSaZu17
Rademacher, F., Sachweh, S., and Zündorf, A. (2017), Towards a UML profile
for domain-driven design of microservice architectures, in: IEEE International
Conference on Software Engeneering and Formal Methods, p. 230–245.

Selic03 B. Selic (2003), The pragmatics of model-driven development, in: IEEE soft-
ware, vol. 20, no. 5, Art. no. 5

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47

