
1 / 13

Executable Architectures for
Complex Software Systems

Sebastian Apel
Technische Hochschule Ingolstadt
Germany

Thomas M. Prinz (Presenter)
Course Evaluation Service, 
Friedrich Schiller University Jena, Germany
Thomas.Prinz@uni-jena.de

Service Computation
2021
The Thirteenth International Conference on Advanced Service Computing

April 18, 2021 to April 22, 2021 - Porto, Portugal



2 / 13

About the presenter

• Diploma in computer science at Friedrich Schiller 
University Jena (FSU), Germany (2010)

• Ph.D. in computer science at FSU (Dr. rer. nat., 2017)
• Since 2017, researcher and software architect at the 

Course Evaluation Service, FSU

• Research in:
• Compiler construction
• Business process verification and management
• Software engineering
• Human Computer Interaction (HCI)
• Evaluation theory

Photo: Anne Günther (University Jena)



3 / 13

How to build a system today

• Architectures describe abstract components
• They further describe how they interact / communicate

• Modern architecture styles like microservices separate 
software into small independent services 
(components)

• They interact in a network



4 / 13

Motivation

• Each component has its own individual tool stack and 
runtime environment

✓Proper separation of functionality
✓High availability for reuse
✓Exchangeable



5 / 13

Motivation

BUT:
• There is a gap between architecture description and implementation

• No translation from architecture to implementation
• The implementation does not automatically result from the 

architecture
• Developers necessary for different abstraction levels

• Overhead of 1:3 in implementation [Apel2019]:
• 300 lines of organizational code (communication, mapping, etc.)
• 100 lines of functional code

GOAL:
• Benefit in time, robustness, and correctness if everyone can focus on 

functionality only

[Apel2019] S. Apel, F. Hertrampf, and S. Späthe, “Towards a Metrics-Based Software Quality Rating 
for a Microservice Architecture - Case Study for a Measurement and Processing Infrastructure,” in
Innovations for Community Services - 19th International Conference, I4CS 2019, Wolfsburg, Germany, 
June 24-26, 2019, Proceedings, ser. Communications in Computer and Information Science, K. Lüke, 
G. Eichler, C. Erfurth, and G. Fahrnberger, Eds., vol. 1041. Springer, 2019, pp. 205–220.



6 / 13

Idea

1. Meta programming language
2. Compilation
3. Automation
4. Integrated development environment (IDE)



7 / 13

Meta Programming 
Language

• Allows to implement in different programming 
languages
(85% of software engineers use multiple languages 
during development [Zhang2019])

• Can be an extension of an existing programming 
language (like Java)

• Has its own compiler and runtime environment that 
separates the software

[Zhang2019] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. 
Zhang, “Microservice architecture in reality: An industrial 
inquiry,” in IEEE International Conference on Software 
Architecture, ICSA 2019, Hamburg, Germany, March 25-
29, 2019. IEEE, 2019, pp. 51–60.



8 / 13

Meta Programming 
Language

✓ Communication interfaces are easy to 
identify and to verify

✓ Data models are implemented once

✓ No mapping of input and output 
parameters

• Should allow data-orientation with streams
• Should allow to define processes



9 / 13

Compilation

1. Interpretation
• Fast error detection
• Debugging
• Bottlenecks identification

2. Compilation
• Static analyses
• Increase performance
• Optimization

Computation

handlePairs

Java

computeSums

R

Service

Service

Pair

Pair



10 / 13

Compilation / Automation

• Data models must be generated in all target languages that use 
them

• Surrounds code with persistence, communication, etc.

• Abstract functionality must be compiled into those languages 
best fitting the functionality’s realization

• Compilation into different tool stacks

• Choosing appropriated tool stacks

• Generation of deployable artifacts

Computation

handlePairs

Java

computeSums

R

Service

Service

Pair

Pair



11 / 13

• IDE for the meta programming language

• IDE shall support all phases of software 
development

• Planning
• Analysis
• Design
• Implementation
• Maintenance

• IDE knows complete system
• Allows to support design / implementation
• Avoids errors

• Shall reduce technical details

Integrated development 
environment (IDE)



12 / 13

Short discussion

− Not a complete new idea
• Architecture description languages
• ArchJava, Archface, etc.
• BUT:

✓ Usage of (new) concepts (microservices, libraries, 
business processes, continuous integration, etc.)

✓ Service-orientation

✓ The meta language will not cover all use cases by default

− Seems to be centralized, independent service implementation may 
increase generalization and minimize coupling

✓ Allows agile software development and fast prototyping since the 
architecture can be extended successively

✓ Focus on what to do, not how to do it



13 / 13

Thank you 
for your attention!

Sebastian Apel
Technische Hochschule Ingolstadt
Germany
Email: sebastian.apel@thi.de

Thomas M. Prinz
Course Evaluation Service
Friedrich Schiller University Jena
Germany
Email: thomas.prinz@uni-jena.de

Photo: Anne Günther (University Jena)

mailto:sebastian.apel@thi.de
mailto:thomas.prinz@uni-jena.de

