

The Twelfth International Conference on Sensor Device Technologies and Applications SENSORDEVICES 2021 November 14, 2021 to November 18, 2021 - Athens, Greece

Detection of Proteins Associated with Alzheimer's Disease using a Terahertz Chemical Microscope

Kohei Iwatsuki, Yuichi Yoshida, Xue Ding, Sayaka Tsuji, Jin Wang, Kenji Sakai, Toshihiko Kiwa

Kohei Iwatsuki

Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan Email : prsd3x9h@s.okayama-u.ac.jp

Kohei Iwatsuki

- He received the B. E. degree from Ryukyu University in 2020.
- Currently, he is a student of the Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University.
- His research interests include terahertz engineering and Alzheimer's Disease.

Background

Early detection in the stage of mild cognitive impairment (MCI)

Elimination of amyloid β

 Apolipoprotein AI (ApoA1) · Transthyretin (TTR) Complement component 3 (C3)

Screening tests for MCI

Risk analysis based on measured blood levels of proteins

Detection method

- Turbidimetric Immunoassay (TIA)
- Enzyme-Linked immunosorbent assay (ELISA)

Sample volume

About **10mL** of blood (Serum at least **3mL**)

Terahertz Chemical Microscope (TCM)

Equipment for detecting chemical reactions in minute quantities

Application to screening tests for MCI

► Efficiency

Unify methods for detecting biomarkers

Minimally invasive

Reduce the amount of sample required

TCM : Terahertz Chemical Microscope

TCM can visualize chemical reactions on a sensing plate.

Sensing plate

Configuration of TCM

Measurement by TCM

Measurement principle

Measurement by TCM

Measurement by TCM

Sample

C3 and ApoA1 were measured.

We prepared **three samples** of each.

Result

C3

Before After 0 µg/ml 10 µg/ml 0.04 8 8 0.02 THz Amplitude (mV) THz Amplitude (mV) THz Amplitude change(mV) - 0.01 - 0.02 - 0.0 Y axis (mm) Y axis (mm) 3 2 -0.12 0 0 2 6 8 0 4 2 4 6 8 0 -0.14 **100 µg/ml** X axis (mm) 1 µg/ml 20 40 60 80 100 0 X axis (mm) C3 Concentration (µg/mL)

The intensity of terahertz waves changes with the concentration of C3(0, 1, 10, 100µg/mL)

Result

ApoA1

The intensity of terahertz waves changes with the concentration of ApoA1(0, 0.1, 1, 10µg/mL)

Conclusion and Future Work

The TCM has been proposed for early diagnosis of AD by measuring several types of biomarkers.

Antibodies (**Anti-C3** and **Anti-ApoA1**) were immobilized on the sensing plate using avidin-biotin conjugation to measure the **C3** and **ApoA1**, respectively.

The change in the amplitude of terahertz wave from the sensing plate depended on the concentration of biomarkers.

► protein concentration [C3 \Rightarrow 1~100µg/mL, ApoA1 \Rightarrow 0.1~10µg/mL]

Future Work

Measurement of TTR

- Simultaneous measurement of three proteins (C3, ApoA1, TTR)
- Improvement of detection sensitivity
- \cdot Measurement of protein in serum