

University of Nebraska at Omaha

Mobility and Health: can we use mobility data to accurately monitor health levels and predict potential Monitoring?

IARIA SENSORCOMM 2021 Hesham H. Ali – hali@unomaha.edu UNO Bioinformatics Core Facility College of Information Science and Technology

Hesham H. Ali, PhD

Background and Professional Experience:

- Professor of Computer Science, College of Information Science and Technology, University of Nebraska Omaha (UNO)
- Director of UNO Bioinformatics Core Facility
- Served as the Lee and Wilma Seemann Distinguished Dean of UNO College of Information Science and Technology between 2006 and 2021
- Published over 200 articles, books and book chapters in various IT areas including scheduling, distributed systems, data analytics, wireless networks, and Bioinformatics
- Has been leading a Research Group that focuses on developing innovative computational tools to analyze all health-related data with the goal of advancing next generation of biomedical research and contributing to the preventive and personalized healthcare initiatives

Current Revolution in Scientific Research

- IT is changing many scientific disciplines
- So much relevant data is currently available
- The availability of data shifted many branches in sciences from pure experimental disciplines to knowledge-based disciplines
- Incorporating Computational Sciences and other branches of sciences is not easy
- Interdisciplinary Research? Translational Research? Big Data Analytics?

The Future is Full of Opportunity

UNO BIOINFORMATICS

- Creating the future of networking
- Driving advances in all fields of science and engineering
- Revolutionizing transportation
- Personalized education
- The smart grid
- Predictive, preventive, personalized medicine
- Quantum computing
- Empowerment for the developing world
- Personalized health monitoring => quality of life
- Harnessing parallelism
- Synthetic biology

Revolutionizing Health

Neurobotics

Personalized health monitoring

Evidence-based medicine

P4 Medicine

It's all about the Data!

- How it all began:
 - Advances in instruments and computational technologies led to new new research directions
 - Massive accumulation of data led to investigating new potential discoveries
 - The availability of enormous various types of public/private data sources
 - How to take advantage of the available data
- We are living the information world? Or the raw data world?

How to collect mobility data?

- Laboratory setting
- Real-world setting
- Self-reported data collection method
- Using monitoring devices, sensors and accelerometers or using Internet of Things (IoT) devices

Laboratory-based Gait Monitoring

- Expensive
- Uncomfortable

Complicated

Wireless Sensors and Mobility Monitoring

- Inexpensive
- Comfortable

High mobilitySimple

Challenges and Opportunities

- Too much data?
- Are all available datasets relevant?
- Are they all accurate?
- Are they complete?
- Policy issues
- How to analyze such data
- Correlation versus causation
- How results can be verified? Validated?

Data Generation vs. Data Analysis/Integration

- New technologies lead to new data:
 - Competition to have the latest technology
 - Focus on storage needs to store yet more data
- Biomedical community needs to move from a total focus on data generation to a blended focus of measured data generation (to take advantage of new technologies) and data analysis/interpretation/visualization
- How do we leverage data? Integratable? Scalable?
- From Data to Information to Knowledge to Decision making

Current Focus on Data Generation

Data-Information-Knowledge-Wisdom

http://www.ritholtz.com/blog/wp-content/uploads/2010/11/data_info_knowledge_wisdom.p

- <u>Data:</u> Physical entities at lowest abstraction level; contain little/no meaning – Measured data
- <u>Information:</u> Derived from data via interpretation Processed data
- <u>Knowledge:</u> Obtained by inductive reasoning, typically through automated analysis and iterative collaboration – data + relationships
- Decision Support:

Big Biomedical Data

Genetic Data

- Personalized genome
- Genome over time?
- Susceptibilities
- Preventative therapeutics

Social Data?

- Relationship/friendship data
- Location
- Smog
- Light Exposure

Wellness Data

- Sleep habits
- Eating habits
- Daily activity
- Stress levels

Mobility and Wellness

- Relationship between mobility and health is now well-documented
- Recent Advancement of Sensor technology Widespread of sensors
- Impact of Internet of Things
- So much relevant data is currently available
- Individual-focused mobility data
- The impact of the commercial aspect
- The potential of Big Data Analytics

Mobility and Health

- Mobility data collection: Continuous and noninvasive
- Mobility data: may not be 100% accurate
- Can we convert Individual-focused mobility data to population analysis
- From mobility parameters to health assessment to the prediction of health hazards
- Prevention and proactive healthcare as compared to reactive medicine

Main categories of wearable monitors:

Widespread of Wearable devices

- Pedometer
- Load transducer/foot-contact monitors
- accelerometers
- HR monitors
- Combined accelerometer and HR monitors
- Multiple sensor system

Motivation

- Can we use mobility parameters or patterns to assess health?
- Would mobility data be useful to adjust or tweak rehabilitation programs?
- Can we use mobility data to determine the right time to discharge patients after hospital procedures?
- Would mobility data be helpful in predicting health hazards before they happen?
- Can we utilize mobility information to determine the level of assistance needed for elderly in retirement facilities?

Applications in hospital: Post-operative Nursing Care

- A *post-operative* assessment is very important to a full and speedy *recovery from* any type of *surgery*.
 - a full assessment and an individualized treatment plan based upon the patient's needs and level of function, coupled with clinician expectations

- The explosive and widespread use of sensors and wearable devices
- Many studies connected the way people move to their health (physical and mental), safety concerns and overall states of people and environments
- We can collect and store mobility levels parameters
- Data Analytics, AI and machine learning are critical in extracting knowledge from mobility data

Mobility & Health

• Inherent asset of every human being

Wireless Sensors and network models

- Correlation between mobility and health level
- Monitoring mobility levels can mobility prameters reflects health levels
- Aging of cells and aging of systems
- Collaboration between Bioinformatics researchers, Wireless Networks group and Decision Support Systems lab

Wireless Sensors and Mobility Monitoring

- Inexpensive
- Comfortable

High mobilitySimple

Mobility Monitoring

- Availability of many large useful devices focus on collecting relevant data
- Availability of numerous helpful software packages
- Lack of data integration and trendiness of the discipline
- Fragmented efforts by computational scientists and domain experts
- Lack of translational work from the research domain to engineering and healthcare applications
- Increasing interest among researchers, industry and educators

Goals of the Project

- Mobility Profile
 - Patient wearing a 3D-accelerometer will be monitored 24/7.
 - A complete mobility profile will be available for patients and care providers.
- Health hazards Prediction using Mobility Profiles
 - The system will identify anomalous movement and patterns that usually result in a fall or injury,
 - We would be able to take preemptive measures when such a pattern is detected, in order to reduce the occurrence of falls and prevent fall-related injuries.
 - We will develop an index that enables health care providers to determine how likely people are to fall.

Fall Detection Accelerometer-based fall detection

• Measure acceleration in three orthogonal directions.

Shimmer Device

Fall Detection Accelerometer-based fall detection

• Determine an acceleration threshold.

How to Compare Mobility Patterns -Movement Words Coding Scheme

Generating Subsequences of Signal

1 Person-1 Day- Frequency 100HZ- S =1sec

8,640,000 subsequences PD Patients

Walking Signal Sequences

Subsequences

Feature Engineering- Movement Words Coding Scheme

Vocabulary Generation

Mobility Profiles

Target Populations

- Parkinson's Disease
- Multiple Sclerosis
- Amyotrophic Lateral Sclerosis
- Huntington's disease
- Aging (Geriatrics)
- ₽

• Healthy Control (age-matched)

Dataset: Participants and Protocol (Ankle Data)

- Protocol:
 - 4 minute Walking (around the hospital)
 - Sampling frequency:100
 - Moderate PD

		Control	PD	Geriatric
				S
Number	of	5	5	5
subjects				
Gender (M/F)		3:2	3:2	2:3
Age		64 ± 10	72 ± 6.3	81 ± 5.9
UPDRS III			20.8 ± 6.1	
H & Y			2.6 ± 0.5	

Dataset: Participants and Protocol (Wrist Data)

- Three phases of data collection (6-months period between each two phases)- One week of data per individual-per week
- Sampling frequency:100
- Mild, moderate, and sever PD (overall mild PD)

	Healthy	Healthy	PD
	young	elderlies	
Number of	3	3	3
subjects			
Gender (M/F)	2:1	1:2	1:2
Age	23 ± 3.6	65.3 ± 16.2	66 ± 5.0
UPDRS III			
H & Y		2.16 ±	
		0.88	

Dataset: Participants and Protocol (Wrist Data) Second Phase

- Sampling frequency:100
- Mild, moderate, and sever PD (overall mild PD)

	Healthy	Healthy	PD
	young	elderlies	
Number of	19	23	17
subjects			
Gender (M/F)	12/7	10/13	14/3
Age	24.5 ± 2.1	63.6 ± 7	72.1 ± 6.4
UPDRS III			
H & Y			1.29 ± 0.5

Selected Set of Features

 Feature's Name	Description	Feature category
Variabiltiy_StrideTime	Variability of stride time	Signal level
Variability_SVM	Variability of vector magnitude	Signal level
Variability_RMSX	Variability of root mean square in the AP direction	Signal level
Variability_RMSZ	Variability of root mean square in the ML direction	Signal level
Velocity	velocity	Signal level
Smoothness_X	Smoothness in the AP direction	Signal level
Smoothness_Z	Smoothness in the ML direction	Signal level
RMSZR	Root mean square relative to the mean value in the ML lirection	Stride level
Modeling: Machine Learning

- Standard Features:
 - All features (32)
 - First reduced set of features (22)
 - Using Information Gain and Ranker methods
 - Second reduced set of features (8)
 - Using Pearson Correlation coefficient and ANOVA table
 - Third reduced set of features (7)
 - feature sets with one feature less than the optimal number of features

Document-of-Words Features:

- 10 Features for wrist data and 4 features for ankle data

- Various Machine Learning Techniques:
 - SVM, Random Forest, Naïve Bayes, AdaBoost, and bagging
- Validation:
 - K-Fold Cross validation
- Accuracy measures:
 - F-measure, Precision, Recall

Similarity Network Model – Wrist Data-Word Features

Similarity Network Model- Ankle Data (Mild PD) All Features

Similarity Network Model- Ankle Data (Moderate PD)-All Features

Similarity Network Model-Ankle Data (Mild PD)- Reduced_22

Similarity Network Model-Ankle Data (Mild PD)- Reduced_8

Similarity Network Model-Ankle Data (Mild PD)- Reduced_7

Similarity Network Model for the data from the first phase of wrist dataset- Threshold at **90%-** PD and HE

Subject	Gender	Age	MoCA	FoG	FAB	TUG	GDS	H&Y	MFES	Lawton
PD8	Male	69	28	2	39	6.7	0	1	10	8 P7
PD10	Male	71	28	1	39	6.7	1	1	9.3	8
PD1	Male	83	26	8	39	11.2	0 =25	1	8.6	8
PD21	Male	54	25	0	39	9.0	0	1	10	8

Phase1 ~ Phase2- P2 & P3 (90%)

Gender Age Falls i MOCA FOG Sc FAB scot TUG Tin Geriac H-Y st MFES AL Lawto

9.64

Post-operative Nursing Care

- A *post-operative* assessment is very important to a full and speedy *recovery from* any type of *surgery*.
 - a full assessment and an individualized treatment plan based upon the patient's needs and level of function, coupled with clinician expectations

Applications for health subject: Physical therapy / Rehabilitation

- Help a patient perform rehabilitation exercises to improve their balance and mobility, and
- Find exercises that meet patient's specific needs and abilities.

Mobility in Ports and Marine Applications

- Efficient movement in moving platforms represents additional challenges proper assessment is completely missing in such applications
- Many critical functions in such environments depend on mobility parameters.
- Network models can be used to assess workers' ability to adjust to moving grounds.

Novice

Explore the differences human behavior base on proficiencies

Summary of Case Study

- Correlation Network model worked beautifully when we applied it to both dataset.
- MIGMC provided us with the best set of features
- Accelerometers at ankles and Wrist can capture gait parameters that are useful in early diagnosis of disease.
- The performance of Bag-of-Words model is ,if not higher than, equal to the Standard Model
- Ankle data are more precise in identification of patients with PD compared to Wrist Data
- Still wrist could be argued as a better body location (87.5% accuracy is good enough)

Mobility Developmental Disorder

- Developmental disorder during early childhood influences motor/mobility
 - Autism
 - Cerebral Palsy
- Certain diseases at any stage in the lifetime may alter mobility
 - Mental disorders Depression

Existing clinical diagnosis

- Developmental disorders (Autism, CP)
- Mental disorders (Depression)
- No pathology test
- Self reporting assessment
- Interview based diagnosis
- Observational scale
 - MADRS score for Depression
 - Pretchl's assessment for CP

Existing clinical diagnosis

- Existing approaches are time intensive
- Accuracy is observer dependent
- Requires expensive clinical infrastructure
- Helpful tool for clinicians for accurate decision making
- Necessity of sophisticated approach

Mobility as a feature

- Motor activity of conditioned is lower than their healthy counter parts
- Mobility has been used to characterize patients with movement disorders
- Can we also characterize or assess developmental disorders by utilizing mobility?

Analysis of Depression Episodes

- Depression
 - 280 million people suffering from depression across the world¹
 - a deep sorrow that lasts for more than two weeks
 - Serious mental disorder
 - Poor performance in work, school
 - Affects quality of life, relationships

State-of-the-art Clinical diagnosis

- No standard pathology test
- Feedback based assessment
 - diagnostic questionnaire assessed by clinical expert
 - Score based tests
 - Score indicates severity of the symptoms
 - E.g. Montgomery-Asberg Depression Rating Scale (MADRS)

Correlation Network Model

Depression Public Dataset

- Depression dataset
- <u>55 Subjects-</u> 23 condition (depressed) & 32 control (normal)
- <u>Duration</u> avg 12.6 days by each subject
- <u>Sensor</u> ActiWatch accelerometer-based sensor worn on right wrist
- <u>Data -</u> each person activity is recorded in separate csv file with time stamp

Depression public dataset

- Sensor <u>records integration of</u> <u>intensity, amount and duration of</u> movement in all directions (in the form of actigraph count)
- <u>number of counts</u> is proportional to <u>intensity of the movement.</u>

	0	-	
timestamp	date	activity	
5/7/2003 12:00	5/7/2003	0	
5/7/2003 12:01	5/7/2003	143	
5/7/2003 12:02	5/7/2003	0	
5/7/2003 12:03	5/7/2003	20	
5/7/2003 12:04	5/7/2003	166	
5/7/2003 12:05	5/7/2003	160	
5/7/2003 12:06	5/7/2003	17	
5/7/2003 12:07	5/7/2003	646	
5/7/2003 12:08	5/7/2003	978	
5/7/2003 12:09	5/7/2003	306	

Demographic details

- Demographic details of each patient
 - Number of days monitored by each patient
 - Gender
 - Age
 - Unipolar or bipolar disorder
 - MADRS score at day 1 and day last

-		-		_			-			-			
	number	days	gender	age	afftype	melanch	inpatient	edu	marriage	work	madrs1	madrs2	
	condition	11	2	35-39	2	2	2	10-Jun	1	2	19	19	
	condition_	18	2	40-44	1	2	2	10-Jun	2	2	24	11	
	condition_	13	1	45-49	2	2	2	10-Jun	2	2	24	25	
	condition_	13	2	25-29	2	2	2	15-Nov	1	1	20	16	
	condition_	13	2	50-54	2	2	2	15-Nov	2	2	26	26	
	condition_	7	1	35-39	2	2	2	10-Jun	1	2	18	15	
	condition_	11	1	20-24	1	NA	2	15-Nov	2	1	24	25	
	condition_	5	2	25-29	2	NA	2	15-Nov	1	2	20	16	
_		1											

Research questions

- Building a graph where groups of persons with similar mobility patterns are strongly connected
- Identify clusters/communities exhibiting similar mobility profiles
- Group according to their inter & intra cluster properties
- Enrichment analysis

Features

TABLE II: Hour-wise features

Feature name	Features count	Feature description
m0-m23	24	Mean (average) of motor activity measured for every hour for 0-23 hours
sd0-sd23	24	The standard deviation of motor activity measured for every hour for 0-23 hours
id	1	The unique id represents an indi- vidual from 55 subjects

Constructing a correlation graph

• Pearson correlation coefficient is applied on 55x55 feature matrix for each model

Clustering/discovering communities

- Community is group of one or more persons exhibiting similar mobility characteristics ⁵
- MCL(Markov Clustering) algorithm⁶ with default parameters (expansion = 2 and inflation = 2)
- MCL works by randomly visiting to find the strongly connected components in the graph.

Cluster analysis and grouping

- Score (P_i) = (Σ inter cluster edges) / (Σ intra cluster edges)
 - For all subjects
- Score is representation
 - how well the node is connected to other nodes in the same cluster (Homogeneity)
 - How good the node is far from different cluster (Separability)

Cluster analysis and grouping

• Group the nodes in the same cluster into two groups

Group no	Original group	score	Interpretation
Group 1	Condition	0	Depression severity is higher
Group 2	Condition	>0	Depression severity is lower
Group 3	Control	>0	healthy but similarity is higher with respect to condition group
Group 4	Control	0	healthy group

Correlation graph and clustering

Groups by score

Group no	Original group	score	Color	
			code	
	Condition	0	Red	
Group 1				
Group 2	Condition	>0	Purple	
Group 3	Control	>0	Orange	
Group 4	Control	0	Green	

Mean activity across groups

- Red group have significantly lower mobility
- Mean activity represents their mobility and group

MADRS score for condition groups

 MADRS for red group is higher than purple group

MADRS score across condition group

Age across groups

- All persons in red group > 30 years
- Majority of orange group are young participants < 30 years

Gender across groups

 Majority of green group are females

Discussion

- Person with id p7 belongs to condition & purple group
 - has high MADRS score but mean is also high
 - Age is 20-24. Youngest in condition group.
 - Regardless of depression his mobility skills are high, because he is Young?
- Singleton clusters P2, P14, P18, and P44
 - Mobility of P14 & P18 is significantly lower
 - P2 mobility is high but total number of days data collected is higher
 - 19 days for P2 while mean days of assessment is 12 days only
 - P44 has significantly lower number of days i.e 7 days
- Does these features cause them to clustered as singleton?

Conclusion

- Ability to identify groups with mobility as feature by utilizing population analysis-based Correlation network
- Identifying group of persons with similar mobility features without using class labels

Sciences at Crossroads

- Many Scientific disciplines are now at crossroads
- The proper penetration of IT represent tremendous challenges and great opportunities
- The importance of interdisciplinary approach and knowledge integration to problem solving
- The need for in-depth analysis and problem solving rather than the surface-level approaches
- Revolution is data collection requires a revolution in data Analytics – Complex Data demand Complex Methods

Acknowledgments

Bioinformatics Research Group

Kiran Bastola Sanjukta Bhoomwick Oliver Bonham-Carter Kate Dempsey Sachin Pawaskar Jay Peterson Ishwor Thapa Julia Warnke Sean West

• Former Members of the Group

Alexander Churbanov Xutao Deng Huiming Geng Xiaolu Huang Daniel Quest

Biomedical Researchers

Steve Bonasera Steve Hinrichs Howard Fox Howard Gendelman

• Wireless Sensors Research Group

Jon Youn Sangil Choi Abhilash Patlolla Elham Rastegari Ikhyun Youn

• Funding Sources

NIH NIA NSF EPSCoR NSF STEP Nebraska Research Initiative

