< =
= =
Sww
& 5E
S S S 3
nHmm S.I = W 1
: 0 QO = -
< @O
._ol..v > 0 .
& 2%
WaD g2
@
=D
f-m m
oL 3
_l
n L

Gli

mmmmmmﬁﬁw«
wﬁﬁmﬁﬁﬁ o

apeetit
it

L 55&5

Clock Glitching

o .

Cycle B

Cycle A .‘=;1
“—Glitch Period—*

S T

* The schematic shows the clock line of a targeted microprocessor

* Normally a clock signal consists of a rectangle wave with fixed period like shown in ,,Cycle A“

* ,Cycle B” shows a cycle with a glitch
* The clock signal is modified to include a second high-signal within the duration of ,,Cycle B

* The goal is to alter the execution of the processor, i.e. skipping an instruction

Technische Hochschule Ingolstadt | Software Based Glitching Detection

Exact Effects of Clock Glitches

* Balasch et. al described the effects of clock glitches

in detail for AVR microprocessors

* The table shows the actually executed instruction

depending on the period of the induced glitch

* According to the decayed states with different glitch
periods the actually executed instruction first
dacays to a zero state before the new instruction

opcode is loaded.

Technische Hochschule Ingolstadt | Software Based Glitching Detection

Glitch
period Instruction Opcode (base 2)
TST R1Z 0010 0000 1100 1100
- BREQ PC+0x02 1111 0000 0000 1001
SER RZ6 1110 1111 1010 1111
<Hins 1LDI R26,0xEF 1110 1110 1010 1111
<5Hbns LDI R26,0xCF 1110 1100 1010 1111
<52ns 1DI R26,0x0F 1110 0000 1010 1111
<4bns LDI R16,0x09 1110 0000 0000 1001
<32ns 1D RO,Y+0x01 1000 0000 0000 1001
< 28ns LD RO,Y 1000 0000 0000 1000
<27ns 1DI R16,0x09 1110 0000 0000 1001
< 15ns BREQ PC+0x02 1111 0000 0000 1001

Existing Glitch Detection Techniques

Instruction Duplication

The code shows the duplication and check of a

single memory load (ldr) instruction

* Instead of simply loading the value at x0 into wl itis

loaded twice

* Afterwards the two loaded values are compared
(cmp), if they do not match a glitch error is

generated

* Simple instruction duplication is still vulnerable to

single clock glitches as shown by Yuce et. al

Technische Hochschule Ingolstadt | Software Based Glitching Detection

ldr
ldr
cmp
bne

wl, [x0]

w0, [x0]

wl, w0
glitch_error

Existing Glitch Detection Techniques

Loop Count Validation

* Proy et. al describe glitch detection via loop count

validation

* The two code examples on the right show the

concept of this glitch detection mechanism

* For each loop variable a second variable is added,
which is modified the same way the original loop

variable is

* After the loop the second variable is used to

validate the loop condition

Technische Hochschule Ingolstadt | Software Based Glitching Detection

Lk i = 4
while(i < 10) {
[/
1++;
}
(a) Loop with iteration variable
int 1 = 0
int § =
while(i < 10) {
[/
1++;
] ++;
}

dsseit (7 == 10

(b) Loop from |4a|with validation

Fig. 4: Basic loop validation example

Novel Glitch Detection Approach: Expression Validations (-

Identifying Locations for Validations (1/2)

* Expression validation is similar to instruction int main(int argc, char **argv)

1
duplication int x = arge * 10 - 2;
if (axge > 1)
* Rather than placing the duplication right next to the {
int = X * 3;
original instruction it is placed at the last location 4
inside the function where the computed value is still if (argec > 2)
puts (argv [1]);
in scope
£y we= guledete ‘gt hare
* The code on the right shows the validation location }
for two variables ,x‘ and ,y* P e HELTEEEE CETVREVE
return x;
+

Technische Hochschule Ingolstadt | Software Based Glitching Detection

Novel Glitch Detection Approach: Expression Validations

Identifying Locations for Validations (2/2)

* In acompiler a function is represented as a control

flow graph (basic blocks + edges)

* Expressions are converted to SSA form, where each

value is only assighed once

* The best possible spot for a validation is the end of
the last block where all preceeding blocks are

successors of the creation of the variable

* Block 6 shows the validation of variable ,x_10°
which was created in Block 2, corresponding to

variable ,x* shown on the previous slide

Technische Hochschule Ingolstadt | Software Based Glitching Detection

BLOCK 2

1 = argc_9(D) * 10;

x 10 = 1 + -2;
if (argc_9(D) > 1)

I i

Y

BLOCK 6

.MEM_8 = PHI <.MEM_11(D)(2),

_5 = argc_9(D) * 10;

6=_5+ -2;
__builtin_validate (x_10, _6);
_17 = x_10;

.MEM_15(5)>

I

Novel Glitch Detection Approach: Expression Validations

Performance Impact

Best possible performance decrease is the same as with instruction duplication

* The validations are placed at the last possible position and thus extend the life range of variables to

the maximum possible

* Longer life ranges make register allocation harder resulting in the Compiler generating less

performant code

* =>The novel glitch detection approach is best applied selectively instead of on the full program

Technische Hochschule Ingolstadt | Software Based Glitching Detection

References

* J. Balasch, B. Gierlichs, and I. Verbauwhede, "An In-depth and Black-box Characterizationof the
Effects of Clock Glitches on 8-bit MCUs”, 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2011, pp. 105-114, 2011.

* B. Yuce et. al, "Software Fault Resistance is Futile: Effective Single-Glitch Attacks”, 2016 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 47-58, 2016.

* J. Proy, K. Heydemann, A. Berzati, and A. Cohen, "Compiler-Assisted Loop Hardening Against Fault
Attacks”, ACM Trans. Archit. Code Optim. 14, 4, pp. 1-25, 2017.

Technische Hochschule Ingolstadt | Software Based Glitching Detection

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

