
Software Based
Glitching Detection

15.11.2021

Jakob Löw

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● The schematic shows the clock line of a targeted microprocessor

● Normally a clock signal consists of a rectangle wave with fixed period like shown in „Cycle A“

● „Cycle B“ shows a cycle with a glitch

● The clock signal is modified to include a second high-signal within the duration of „Cycle B“

● The goal is to alter the execution of the processor, i.e. skipping an instruction

Clock Glitching

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● Balasch et. al described the effects of clock glitches

in detail for AVR microprocessors

● The table shows the actually executed instruction

depending on the period of the induced glitch

● According to the decayed states with different glitch

periods the actually executed instruction first

dacays to a zero state before the new instruction

opcode is loaded.

Exact Effects of Clock Glitches

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● The code shows the duplication and check of a

single memory load (ldr) instruction

● Instead of simply loading the value at x0 into w1 it is

loaded twice

● Afterwards the two loaded values are compared

(cmp), if they do not match a glitch error is

generated

● Simple instruction duplication is still vulnerable to

single clock glitches as shown by Yuce et. al

Existing Glitch Detection Techniques
Instruction Duplication

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● Proy et. al describe glitch detection via loop count

validation

● The two code examples on the right show the

concept of this glitch detection mechanism

● For each loop variable a second variable is added,

which is modified the same way the original loop

variable is

● After the loop the second variable is used to

validate the loop condition

Existing Glitch Detection Techniques
Loop Count Validation

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● Expression validation is similar to instruction

duplication

● Rather than placing the duplication right next to the

original instruction it is placed at the last location

inside the function where the computed value is still

in scope

● The code on the right shows the validation location

for two variables ‚x‘ and ‚y‘

Novel Glitch Detection Approach: Expression Validations
Identifying Locations for Validations (1/2)

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● In a compiler a function is represented as a control

flow graph (basic blocks + edges)

● Expressions are converted to SSA form, where each

value is only assigned once

● The best possible spot for a validation is the end of

the last block where all preceeding blocks are

successors of the creation of the variable

● Block 6 shows the validation of variable ‚x_10‘

which was created in Block 2, corresponding to

variable ‚x‘ shown on the previous slide

Novel Glitch Detection Approach: Expression Validations
Identifying Locations for Validations (2/2)

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● Best possible performance decrease is the same as with instruction duplication

● The validations are placed at the last possible position and thus extend the life range of variables to

the maximum possible

● Longer life ranges make register allocation harder resulting in the Compiler generating less

performant code

● => The novel glitch detection approach is best applied selectively instead of on the full program

Novel Glitch Detection Approach: Expression Validations
Performance Impact

 Technische Hochschule Ingolstadt | Software Based Glitching Detection

● J. Balasch, B. Gierlichs, and I. Verbauwhede, ”An In-depth and Black-box Characterizationof the

Effects of Clock Glitches on 8-bit MCUs”, 2011 Workshop on Fault Diagnosis and Tolerance in

Cryptography, 2011, pp. 105-114, 2011.

● B. Yuce et. al, ”Software Fault Resistance is Futile: Effective Single-Glitch Attacks”, 2016 Workshop

on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 47-58, 2016.

● J. Proy, K. Heydemann, A. Berzati, and A. Cohen, ”Compiler-Assisted Loop Hardening Against Fault

Attacks”, ACM Trans. Archit. Code Optim. 14, 4, pp. 1-25, 2017.

References

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

