
Connecting Product Management and Software

Architecture – Challenges for the Digital Transformation

PD Dr. Christoph Knieke / Prof. Dr. Andreas Rausch

Technische Universität Clausthal

Institute for Software and Systems Engineering

Clausthal-Zellerfeld, Germany

Email: christoph.knieke@tu-clausthal.de,

andreas.rausch@tu-clausthal.de

ComputationWorld 2021, April 18-22, Portugal

mailto:christoph.knieke@tu-clausthal.de
mailto:andreas.rausch@tu-clausthal.de

2

Short resume of the presenter

▪ 2004: Diploma in computer science

▪ 2011: Doctoral degree

▪ 2019: Habilitation degree

▪ Lecturer and post-doctoral researcher at TU Clausthal

▪ Leader of research group „Requirements, Architecture and Lifecycle

Engineering at TU Clausthal

▪ Leader of several R&D projects, e.g., together with Volkswagen AG

▪ Organizer of special tracks at IARIA conferences

▪ Research interests:

- Model-based systems engineering (MBSE)

- Domain-specific modeling languages

- Software product line engineering

- Architecture evolution

PD Dr. Christoph Knieke

3

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

4

Platform Strategy – A Well-known Successful Approach in

Automotive Industry

▪ Manufacturing of product families based on platforms since the 1960s

▪ High number of variants

▪ High degree of reuse

PQ31/A1 PQ32/A2 PQ34/A4 MQB

5

Software Sharing: A Platform Strategy for Software

Benefits of Software Sharing

▪ Increasing of reusability

▪ Protecting the core know-how

Library of reusable (and versioned)

implementation artifacts

Project specific (versioned) “product”

(Programmstand, Kundenprojekt, etc.)

Project/Customer specific

implementation artifacts

(Code, App-Para, etc.)

Project/Customer specific

implementation artifacts

(Code, App-Para, etc.)

Software Sharing = Essential Part of Platform Strategy + Success Factor!

Project Specific (Versioned) “product”

(Programmstand, Kundenprojekt, etc.)

OEM

Supplier 1 Supplier 1

Supplier 2 OEM

▪ Saving of development costs

▪ Increasing of quality

6

Variability in Software Modules = Key Concept in Software Sharing

Project specific (versioned) “product”

(Programmstand, Kundenprojekt, etc.)

Project specific (versioned) “product”

(Programmstand, Kundenprojekt, etc.)

Project/Customer specific

implementation artifacts

(Code, App-Para, etc.)

Produced and delivered car type

(Fahrzeugtyp, Kundenfahrzeug)

Produced and delivered car type

(Fahrzeugtyp, Kundenfahrzeug)

Configuration of Positive

Variability (selection of

implementation artefacts)

and Negative Variability

(system parameters conf.

for preprocessing /

compile)

Project/Customer specific

implementation artifacts

(Code, App-Para, etc.)

Car type specific software

application data set

(Negative Variability),

flashing, customer

specific configuration

(Negative Variability run-

time!)

OEM

Supplier 1 Supplier 1

Supplier 2 OEM

7

Configuring the Negative Variability

▪ By „switches“ in the code, preprocessing code is deleted

▪ Attention (partly compiler dependent):

- Compilers can leave dead code in the program

- Optimizing compilers can delete dead code

▪ Further parameter values set during application

CompilerPreprocess Application

a:=1

b:=0 y:=1 x:=1

8

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

9

Introduction to Software Product Line Engineering (SPLE)

▪ Domain Engineering: Define and realize the commonality and the variability

of the software product line.

▪ Application Engineering: Deriving product line applications from the platform.

Domain
Req. Eng.

Domain
Design

Domain
Realization

Domain
Testing

Domain Product
Management

Domain Artifacts

D
o

m
a

in
 E

n
g
in

e
e
ri

n
g

A
p

p
l.
 E

n
g
in

e
e
ri

n
g

Software-Produkt 1Software-Produkt 1

Problem Space Solution Space

Application
Req. Eng.

Application
Design

Application
Realization

Application
Testing

Appl. Product
Management

Software Product N

10

Current Status: Use of SPLE in the Automotive Domain

Domain
Realization

Domain Product
Management

Domain Artifacts

D
o

m
a

in
 E

n
g
in

e
e
ri

n
g

A
p

p
l.
 E

n
g
in

e
e
ri

n
g

Software-Produkt 1Software-Produkt 1

Problem Space Solution Space

Application
Req. Eng.

Application
Design

Application
Realization

Application
Testing

Appl. Product
Management

Software Product N

ISO 26262 – Bidirectional Traceability

11

Challenge: Modelling of Requirements and Design Artifacts

Domain
Req. Eng.

Domain
Design

Domain
Realization

Domain
Testing

Domain Product
Management

Domain Artifacts

D
o

m
a

in
 E

n
g
in

e
e
ri

n
g

A
p

p
l.
 E

n
g
in

e
e
ri

n
g

Software-Produkt 1Software-Produkt 1

Problem Space Solution Space

Application
Req. Eng.

Application
Design

Application
Realization

Application
Testing

Appl. Product
Management

Software Product N

12

Challenge: Variability and Configurability

Domain
Req. Eng.

Domain
Design

Domain
Realization

Domain
Testing

Domain Product
Management

Domain Artifacts

D
o

m
a

in
 E

n
g
in

e
e
ri

n
g

A
p

p
l.
 E

n
g
in

e
e
ri

n
g

Software-Produkt 1Software-Produkt 1

Problem Space Solution Space

Application
Req. Eng.

Application
Design

Application
Realization

Application
Testing

Appl. Product
Management

Software Product N

13

Challenge: Traceability of all Development Artifacts

Domain
Req. Eng.

Domain
Design

Domain
Realization

Domain
Testing

Domain Product
Management

Domain Artifacts

D
o

m
a

in
 E

n
g
in

e
e
ri

n
g

A
p

p
l.
 E

n
g
in

e
e
ri

n
g

Software-Produkt 1Software-Produkt 1

Problem Space Solution Space

Application
Req. Eng.

Application
Design

Application
Realization

Application
Testing

Appl. Product
Management

Software Product N

14

Challenge: Lifecycle Management

Domain
Req. Eng.

Domain
Design

Domain
Realization

Domain
Testing

Domain Product
Management

Domain Artifacts

D
o

m
a

in
 E

n
g
in

e
e
ri

n
g

A
p

p
l.
 E

n
g
in

e
e
ri

n
g

Software-Produkt 1Software-Produkt 1

Problem Space Solution Space

Application
Req. Eng.

Application
Design

Application
Realization

Application
Testing

Appl. Product
Management

Software Product N

15

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

16

Importance of Modelling: Many Reasons for Introducing

Model-based Engineering

Reference: G. Liebel, N. Marko, M. Tichy, A. Leitner, J. Hansson: Model-based engineering in the embedded systems domain: an

industrial survey on the state-of-practice. Software & Systems Modeling, 17(1), 2018, pp. 91-113.

17

I

P

S

S

E

Further development

Accidental complexity

Essential complexity

Importance of Architecture: Real World Example

“Longitudinal Dynamics Torque Coordination”

▪ Uncoordinated

communication

between all

components

▪ Mutual

coordination

▪ Functions

replicated in

another context

Anti-lock

braking

system

(ABS)

Electronic

stability

program

(ESP)

Driver

Behavior

Emergency

brake

assistant

➔Growing of accidental complexity

➔Huge effort of maintenance and

further development

18

I

P

S

S

E

▪ Some facts about the power train software system:

Importance of Architecture: Real World Example

“Longitudinal Dynamics Torque Coordination”

Element Type* Count

(in 2015)

Projects (versioned) 6.533

Modules (versioned) 21.734

Element Type**

(Project Example: MC6)

Count

(in 2017)

System constants (SC) ~18.000

Application parameters ~80.000

*Source: ADD

**Source: DCM, CSV

19

I

P

S

S

E

Further development

Accidental complexity

Essential complexity

Anti-lock

braking

system

(ABS)

Electronic

stability

program

(ESP)

Driver

Behavior

Emergency

brake

assistant

Coordinator

➔Reducing the accidental complexity▪ Separation of concern

▪ High cohesion

▪ Loose coupling

Driver

Behavior

Electronic

stability

program

(ESP)

Emergency

brake

assistant

Coordinator

Anti-lock

braking

system

(ABS)

Importance of Architecture: Real World Example

Introducing new Architecture Concepts

20

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

21

Where It All Begins: Product Definition and Management

Volkswagen Konfigurator,

[http://www.volkswagen.de]

• Trendline

• Sportline

• Comfortline

• R-Line

• …

Motor-
VarianteEngine

Type

Sensoren
Sensors

Aktuatoren
Actuators

Getriebe-
TypGear

Type

22

Product Definition by Feature Trees

Product Definition: Missing Modelling Concept and Impact to Architecture

Configuratíon

Software Product

Line Architecture

Feature Tree

23

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

24

▪ According to ISO 26262: Documentation must be delivered traceable:

- Effort for maintaining traceability between requirements and architecture

- Effort for delimitation of changes

Requirements Architecture

Enabling Traceability between Requirements and Architecture

25

Example: Steering System at Volkswagen

▪ Initial situation: Development of a release of a new steering system finished

▪ No traceability between requirements and architecture

▪ According to ISO 26262: All traces between 8.000 requirements and 200

modules had to be set manually (Ø 1.000 LOC per module)

▪ Effort: 50 person-years, Costs: 15 Million EUR (incl. costs for 9 month delay

of SOP)

▪ For comparison: Estimated effort, in case the traces had been set before

product realization: 15 person-years (1,5 Million EUR)

In case of a new product development,

traces have to be set again!

26

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

27

Modification to Requirement 9

Requirements Architecture

28

Modification to Component K11

Requirements Architecture

29

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

30

Challenges in Product Management and Software Product Line

Architecture

▪ Scalable modelling approaches supporting variability

- on requirements level, e.g., feature trees

- on design level, e.g., SPLA

▪ Variability and configurability, e.g.,

- determination of variability decisions propagated on domain level

- derivation of artifacts on product level

- derivation of traces on product level

▪ Providing and maintaining traceability, e.g.,

- between feature tree and requirements

- between requirements/features and SPLA

- between SPLA and code artifacts

▪ Lifecycle management between domain / application engineering

31

Approach: Parameterized Artifacts and Propagation of

Variability Decisions

Reference: IBM: Strategic reuse and product line engineering

See: https://www.ibm.com/developerworks/rational/library/14/strategic-reuse/index.html

32

Handling Variability in the Implementation Artifacts

33

Approach: Parameterized Artifacts and Propagation of

Variability Decisions including Derivation of Traces

Domain
Req. Eng.

Domain
Design

Domain
Realization

Domain
Testing

Domain Product
Management

Domain Artifacts

D
o

m
a

in
 E

n
g
in

e
e
ri

n
g

A
p

p
l.
 E

n
g
in

e
e
ri

n
g

Software-Produkt 1Software-Produkt 1

Problem Space Solution Space

Application
Req. Eng.

Application
Design

Application
Realization

Application
Testing

Appl. Product
Management

Software Product N

Benefits: Enabling Traceability + Controlling Variability + Managing Evolution

34

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

35

Importance of Modelling: Real World Example BSU – “Brake

Servo Unit Software System”

▪ Main task: Ensure a sufficient vacuum within the brake

booster that is needed to amplify the driver’s braking force

- Intake manifold as vacuum generator,

- or electrically / mechanically driven vacuum pump

▪ Before 2012: Implemented by various suppliers, no

modeling of architecture

- Monolithic structure; variability realized completely by

annotations; strong coupling and a low cohesion; …

→High accidental complexity

36

Fragment-based Software Architectures for Product Lines

▪ Objective: Linking between features and components

▪ Challenge: Assignment of feature to component not unique

▪ Fragment-based solution approach: Automated generation of component-

based architectures from feature-oriented product lines

37

▪ Example: The feature implementations of a group are merged into one

architecture.

Fragment-based Software Architectures for Product Lines

38

Importance of Modelling: Real World Example BSU

▪ In 2012: New in-house development by Volkswagen and IPSSE

- Implementation on the basis of the documentation of the

existing systems

- Quality targets: Configurability, extensibility and

comprehensibility

→Modelling of new architecture and design concepts

source

source
source

target

target

BSU Sensor 1

BSU Sensor MUX

source

System Diagnostics
DESIGN

sourceBSU Sensor 2

Control Function 1

Control Function 2

target

target

target

Sensors Control Functions

Coordinator

Coordinator Concept

source
source

target

target

Control Function 5
target

source

target

39

Importance of Modelling: Real World Example BSU

Results of the Case Study (2012-2016)

Count

in

2012

Count

in

2016

Number of

versions

Average

number of

versions

Logical architecture elements 10 15 15 1

Module architecture elements 10 15 58 4

Projects 1 21 146 7

Number of

versions

used in

projects

Cumulated

number of

versions used

over all project

versions

Average

degree of

reuse of each

version

Number of

used design

configurations

Module

architecture

elements

46 1611 35 n/a

Projects n/a n/a n/a 14

➔ Stable Architecture, High degree of reuse, High number of variants managed!

40

Effective Tool Support is Essential!

41

An Experiment for the Configuration

Mapping in Prolog...

▪ 400 lines of Prolog program

▪ 13 atomic features and

feature configuration

▪ 15 atomic modules with more than

100 variability parameters

▪ Selection of hierarchical

components via solution variables

solution alternatives

▪ ➔ First attempt: Works and

parameters were reduced by a

factor of 10 (higher factors likely

due to cross effects)

%Beispiel einer Konfiguration der Konfigurationsvariablen,

%welche nur die Komponenten nutzt, die nicht auf die

Drezahlsteuerung

%und die Drosselklappe abziehlen

/*featureVariable(ac):-false.

featureVariable(ottoMotor):-false.

featureVariable(dieselMotor).

featureVariable(hydraulischerBKV).

featureVariable(elektrischerBKV):-false.

featureVariable(elektrischeUnterdruckpumpe).

featureVariable(hydraulischeUnterdruckpumpe):-false.

featureVariable(esp).

featureVariable(eHeizung).

featureVariable(startStop).

featureVariable(katalysator).

featureVariable(sailAvailable).

featureVariable(drosselklappenSteuerung):-false.*/

% Die Menge der Konfigruationsvariablen, welche fÃ¼r die

% VariabilitÃ¤t in der Bedingungslogik genutzt wird.

konfigurationVariable(v1, bsu_bCtlFctAcDeac_C_VW, ak, _).

konfigurationVariable(v2, bsu_idxCtlFctAcMst_C_VW, ak, _).

konfigurationVariable(v3, bsu_idxCtlFctAc_C_VW, ak, _).

konfigurationVariable(v4, bsu_idxCtlFctAcTyp_C_VW, ak, _).

konfigurationVariable(v5, bsu_swiConfAlt_C_VW, ak, _).

konfigurationVariable(v6, bsu_idxCtlFctAltMst_C_VW, ak, _).

konfigurationVariable(v7, bsu_idxCtlFctAlt_C_VW, ak, _).

konfigurationVariable(v8, bsu_idxCtlFctAltTyp_C_VW, ak, _).

konfigurationVariable(v9, bsu_bCtlFctElPmpDeac_C_VW, ak, _).

konfigurationVariable(v10, bsu_idxCtlFctElPmp_C_VW, ak, _).

konfigurationVariable(v11, bsu_bEngOpmDeac_C_VW, ak, _).

Hierarchische Komponenten entstehen durch einen Verbund von

Abstrakten Komponenten. Dabei kann die Auswahl von abstrakten

Komponenten an

Bedingungen geknÃ¼pft sein.

*/

%constraint definition druckkontrolle.

hierarchischeKomponente(hk1, druckkontrolle).

include(hk1, ak15).

include(hk1, ak14).

include(hk1, ak13) :- featureVariable(hydraulischerBKV).

include(hk1, ak12) :- featureVariable(esp).

42

Contents

1. Initial Situation: Platform Strategy in Automotive Industry

2. From Software Sharing to Software Product Line Architecture and
Product Management – Challenges

1. Modelling of Requirements and Design Artifacts

2. Variability and Configurability

3. Traceability of all Development Artifacts

4. Lifecycle Management

3. Our Approach: Connecting Product Management and Software
Product Line Architecture

4. Under the Hood: Concrete Modelling Approach Illustrated by Example

5. How to Cope with the Challenges of the Digital Transformation

43

Future Innovation: Digitization in Almost all Areas at a Rapid Pace

...the innovations of today: Industry 4.0

...future innovations: Digitization - everywhere, rapid and disruptive

▪ Digital ecosystems: Cloud-based platforms, SoS, ...

▪ Transformation to digital agile organization:

Organization with digital genes, products and services

▪ Disruptive business models: Service and data-based

▪ Digitization technologies: AI, big data, connectivity,

language assistants, AR, smart sensors, ...

▪ Reliability and acceptance: Safety, security and privacy

▪ Digitization skills: HR, education, …

“Digitization encompasses the economy and society in

its entirety and in all sectors. Therefore, in the opinion

of the expert commission, focusing R&I policy on the

production sector is counterproductive.“

(EFI 2016, p.63)

44

Digital Ecosystems - The Battle for the Platform is in Full Swing!

45

Digital Transformation - Transformation to a Digital Agile

Organization

Reference: Dr. Katrin Allmendinger and Günther Thoma: Das Agile Unternehmen, see

www.boeckler.de/pdf/v_2016_11_22_allmendinger_thoma.pdf

46

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

Product (P)

P-Design P-Plan

P-Check P-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Recovery &
Discovery

Eroded
Software

Holistic Approach: Managed Evolution of Automotive Software

Product Line Architectures

[SCG+14]

[RBG+14]

[CKR+16]

[KR17]

[GKK+17]

[GKK+17b]

[KKR+17]

[KKR+17b]
[PKB+14]

[KH15]

47

References: List of Own Publications

[CKR+16]
B. Cool, C. Knieke, A. Rausch, M. Schindler, A. Strasser, M. Vogel, O. Brox, S. Jauns-Seyfried, "From Product

Architectures to a Managed Automotive Software Product Line Architecture," in Proceedings of the 31st Annual

ACM Symposium on Applied Computing, ser. SAC’16. ACM, 2016, pp. 1350–1353.

[GKK+17]
A. Grewe, C. Knieke, M. Körner, A. Rausch, M. Schindler, A. Strasser, M. Vogel, “Automotive Software Systems

Evolution: Planning and Evolving Product Line Architectures,” in Special Track: Managed Adaptive Automotive

Product Line Development (MAAPL), along with ADAPTIVE 2017. IARIA XPS Press, 2017, pp. 53–62.

[KH15]
C. Knieke, M. Huhn, "Semantic Foundation and Validation of Live Activity Diagrams," Nordic Journal of

Computing, vol. 15, no. 2, 2015, pp. 112–140.

[KKR+17]
C. Knieke, M. Körner, A. Rausch, M. Schindler, A. Strasser, M. Vogel, “A Holistic Approach for Managed

Evolution of Automotive Software Product Line Architectures,” in Special Track: Managed Adaptive Automotive

Product Line Development (MAAPL), along with ADAPTIVE 2017. IARIA XPS Press, 2017, pp. 43–52.

[KR17]
C. Knieke, A. Rausch: "MAAPL: Managed Adaptive Automotive Product Line Development", Editorial of Special

Track MAAPL along with ADAPTIVE 2017. IARIA XPS Press, 2017.

[KSGR12]
C. Knieke, B. Schindler, U. Goltz, A. Rausch, "Defining Domain Specific OperationalSemantics for Activity

Diagrams," IfI Technical Report Series, IfI-12-04, Department of Informatics,TU Clausthal, 2012.

[PKB+14]

H. Peters, C. Knieke, O. Brox, S. Jauns-Seyfried, M. Krämer, A. Schulze, "A Test-driven Approach for Model-

based Development of Powertrain Functions," in Agile Processes in Software Engineering and Extreme

Programming. 15th International Conference on Agile Software Development, XP 2014. Springer-Verlag, 2014,

pp. 294–301.

[RBG+14]
A. Rausch, O. Brox, A. Grewe, M. Ibe, S. Jauns-Seyfried, C. Knieke, M. Körner, S. Küpper, M. Mauritz, H. Peters,

A. Strasser, M. Vogel, N. Weiss, "Managed and Continuous Evolution of Dependable Automotive Software

Systems," in Proceedings of the 10th Symposium on Automotive Powertrain Control Systems, 2014, pp. 15–51.

[SCG+14]

A. Strasser, B. Cool, C. Gernert, C. Knieke, M. Körner, D. Niebuhr, H. Peters, A. Rausch, O. Brox, S. Jauns-

Seyfried, H. Jelden, S. Klie, M. Krämer, "Mastering Erosion of Software Architectures in Automotive Software

Product Lines," in Proceedings of the 40th International Conference on Current Trends in Theory and Practice of

Computer Science (SOFSEM 2014), ser. LNCS, vol. 8327. Springer, 2014, pp. 491–502.

48

Questions and Discussion

Questions

