
Pattern-Based Ontological Transformations

for RDF Data using SPARQL

Marek Suchánek (FIT CTU in Prague, FBE UA)
marek.suchanek@fit.cvut.cz

Robert Pergl (FIT CTU in Prague)

The Twelfth International Conference on Pervasive Patterns and Applications

PATTERNS 2021

April 18, 2021 to April 22, 2021 - Porto, Portugal

Presenter

• Marek Suchánek, PhD student

• Faculty of Information Technology,

Czech Technical University in Prague

• Faculty of Business and Economics,

University of Antwerp (double PhD)

• Teaching: conceptual modelling and advanced programming courses

• Other projects: Data Stewardship Wizard, Smart City Compass, FAIR Data Point

April 8, 2021

Evolvable RDF Transformations

2 / 13

Motivation

• RDF data are more and more used for enabling machine-readability, machine-

understandability, and machine-actionability

• Various domains: Semantic Web, Linked Open Data, Bioinformatics, AI & Machine

Learning, Software Development, etc.

• RDFs are just triples, to describe its structure RDF schemas or OWL ontologies

can be used

• The same RDF data can be described using multiple ontologies

• How to define mapping between ontologies and execute corresponding

transformation on RDF data

April 8, 2021

Evolvable RDF Transformations

3 / 13

Related Work and Problem Statement

• There are several methods of defining ontology mapping

• There are also several methods for transforming RDF data (however, mainly focus

on RDB, XML, or JSON to RDF transformations)

• It is possible to transform RDF data with SPARQL CONSTRUCT queries

• But those are hard to maintain, i.e., cannot form modules

• How to make the mapping definition with focus on transformation evolvable?

April 8, 2021

Evolvable RDF Transformations

4 / 13

Problem Statement
April 8, 2021

Evolvable RDF Transformations

5 / 13

Our Approach: General Idea

• We propose to define the mapping using RDF input and output patterns

• The patterns use the same syntax as SPARQL

• The patterns can be easily re-used and maintained

• For transformation execution, SPARQL CONSTUCT query is compiled from

specific patterns with resolved dependencies (includes/imports)

• SPARQL CONSTRUCT query can be executed using standard tools over RDF

file(s) or triple store (SPARQL endpoint)

April 8, 2021

Evolvable RDF Transformations

6 / 13

Our Approach: Modular Architecture
April 8, 2021

Evolvable RDF Transformations

7 / 13

Our Approach: Input and Output Pattern

• Input Pattern

• RDF/Turtle syntax, prefix imports

• Match data using triples (subject, predicate, object)

• Bound variables for transformation

• Output Pattern

• RDF/Turtle syntax, prefix imports

• Use bound variables from input pattern(s)

• Construct new triples (subject, predicate, object)

April 8, 2021

Evolvable RDF Transformations

8 / 13

Our Approach: Input and Output Pattern
April 8, 2021

Evolvable RDF Transformations

9 / 13

Our Approach: Pattern Re-Use

• Output pattern uses one or more input

patterns

• Input pattern can also use other input

pattern, e.g., extend it or negate it

• One input pattern can be used by

multiple other patterns

• Naming conflicts must be resolved

when compiling SPARQL query

April 8, 2021

Evolvable RDF Transformations

10 / 13

Our Approach: Query Compilation

1. Resolve imports in all input definitions, including variable renaming.

2. For each output definition, import input definition(s) including variable

renaming.

3. Merge used prefixes and use renaming mechanism for conflicts (when name

and URI do not match).

4. Generate SPARQL CONSTRUCT query with input part in WHERE clause.

5. Execute the query over the input dataset and add result into output dataset.

April 8, 2021

Evolvable RDF Transformations

11 / 13

Example: FOAF -> vCard
April 8, 2021

Evolvable RDF Transformations

Input pattern: input_foaf_person
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf:
<http://xmlns.com/foaf/0.1/> .

?person rdf:type foaf:Person .
?person foaf:name ?name .

Input pattern: input_foaf_organization
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf:
<http://xmlns.com/foaf/0.1/> .
?organization rdf:type foaf:Organization .
?organization foaf:name ?name .

Output pattern: output_complex
@input: input_foaf_person .
@input: input_foaf_organization
{organization: org, name: orgName} .

@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix vcard:
<http://www.w3.org/2006/vcard/ns#> .

?person rdf:type vcard:Individual .
?person vcard:fn ?name .
?org rdf:type vcard:Organization .
?org vcard:title ?orgName .

12 / 13

Conclusions and Future Work

• We revisited and prototyped the inheritance implementation patterns

• Focused on generation from model and maintainability

• Avoid order-related combinatorial effects by solving it upon transformation

• Other change-related combinatorial effect are partially avoided by delegation

• Future work:

• Use to define mapping between conceptual modelling metamodels (and enhance)

• Create a user-friendly application for defining, testing, and compiling the patterns

April 8, 2021

Evolvable RDF Transformations

13 / 13

Questions & Discussion

