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Gas Flares and Oil

• The associated petroleum gas is formed during:

▪ oil extraction, 

▪ oil transportation,

▪ processing of oil.

• The gas usually disposed in flares. 

• It is environmental challenge.

• It is import to monitor the gas flares.



Gas Flare Detection Problem

• Objective instrumental methods for detecting gas flares

• Assessing the volumes of gas burnt on gas flares 

• Based on multi-spectral remote sensing:

▪ Nighttime Earth

▪ Daytime Earth

• Output: 

▪ the list of gas flares locations and flare types

▪ a few thousands of locations



Gas Flares Checking

• Requires visual examination of the locations of the alleged 

gas flares on high-resolution daytime images. 

• Automating reduces the cost of the checking and monitoring 

flares.  

• Our Approach:

▪ automated list verification of high-temperature anomalies.

▪ it is based on the classification of daytime satellite images. 

▪ the classification is carried out using machine learning methods.
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Image Training Dataset

• We use satellite imagery (from the TerraServer web site) for 

the period 2010-2017 :

• about 11000 images,

• resolution of the images is within 1 m per pixel. 

• The images include:

• different types of gas flares,  and

• images without gas flares. 

• Images can contain ”clouds” and ”snow cover” as natural 

disturbances in our classification task.



Daytime Image Examples

Examples of ”clean” 
upstream flare images 

Examples of ”clean” 
downstream flare images 
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Daytime Image Examples (with clouds/snow)

Downstream flare, covered 
with clouds

Upstream flare, covered 
with snow 



Stages of processing for gas flare images



Average accuracy for two classes 
(upstream (or downstream), no flares)

Data SVM Random Forrest CNN

Upstream ”Clean” 0.81 0.79 0.75

Downstream ”Clean” 0.78 0.78 0.74

Upstream ”all” 0.79 0.76 0.75

Downstream ”all” 0.77 0.76 0.74



Average accuracy for three classes 
(upstream, downstream, and no flares)

Data SVM Random Forrest CNN

Upstream,”clean” +

Downstream, ”clean”

0.72 0.71 0.70

Upstream, ”all”  +

Down- stream, ”all”

0.70 0.70 0.68



Conclusions

• A method for  checking  and  correcting the list of high-temperature anomalies is 

proposed. 

• The image classification of daytime satellite gas flare images is carried out using 

machine learning and image processing methods.

• For different variants of datasets (”clean” (without snow and clouds);  ”all”  (all 

images)), the flare image classification is performed.

• The preliminary comparison of the classification quality for different machine 

learning methods (SVM, random forest, CNN is carried out. 

• The following average forecast accuracy is achieved in the experiments: about 

75% for the two classes and about 70% for the three classes.

• Future work concerns the improvement of the classification accuracy of the 

machine learning models used in the paper.  
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