Individual and Collective Information for Generating Interpretable Models of Multi-Layered Neural Networks

Ryotaro Kamimura

Kumamoto Drone Technology and Development Foundation Techno Research Park, Techno Lab 203 1155-12 Tabaru Shimomashiki-Gun Kumamoto 861-2202 IT Education Center Tokai University Japan ryotarokami@gmail.com

Outline

• Problems of interpretation

- Understanding cognitive functions, Critical decision making, improving generalization
- Difficulty to interpret the main mechanism of neural networks

Collective interpretation

• Interpreting neural networks, considering all possible representations generated by learning against conditional, individual and intuitive interpretation

Network compression

- For easy interpretation, we compress multi-layered numeral networks into the simplest ones without hidden layers
- In addition, partial compression is used to see the state of intermediate layers

• Combination of Individual and Collective Information

• To control information more flexibly for better interpretation, we introduce two types of information, namely, individual and collective information, and control them flexiblty

Application to bankruptcy data set

• We could detect **linear and independent relations** between inputs and outputs, hidden in complicated non-linear relations

Problems of Interpretation

- Multi-layered neural networks
 - Applied to many application areas with good performance in improving generalization

• Problem of interpretation

- Complexity
 - As the complexity becomes larger, the interpretation of neural networks has become a very serious problem

•

Necessity of Interpretation

- Research Objective
 - The objective of neural networks is to understand how human cognitive functions work by simulating them. Thus, it is necessary understand the inference mechanism of neural networks
- Critical decision making
 - For application areas with critical decision making such as medical and business applications, it is absolutely necessary to interpret and explain the inference mechanism of neural networks
- Improving generalization
 - In addition, to improve the general performance of neural networks, we need to understand how neural networks respond to inputs to produce outputs

Many Problems of Conventional Methods for Interpretation

Conditional interpretation

- Based on some specific conditions
- With a set of initial weights, a network is trained to produce an internal representation to be interpreted

Individual interpretation

• Most methods aim to explain the responses of neural networks only for some specific instances or input patterns

Intuitive interpretation

• The majority of methods are based on the intuitive and visual interpretation of data such as image data sets, in particular, in the case of CNN

New Interpretation Method: Collective Interpretation

- Collective and Internal Interpretation
 - Network compression
 - Primarily aims to interpret weights themselves
 - By compressing an original multi-layered neural network into the simplest one without hidden layers
 - As many internal representations as possible
 - Individual weights are not dealt with, but all versions of weights are collectively treated
 - By averaging all weights, produced by different initial conditions and different input patterns

Compression

• Collective weights:

- All weights in all layers are gradually multiplied and summed to produce collective weights
- This means that we compute all routes from inputs to outputs

• No hidden layers:

- Any multi-layered neural networks can be reduced to networks without hidden layers
- The final non-hidden layered networks can be interpreted as the conventional regression analysis

Combination of Individual and Collective Information

- Flexible Control
 - To control flexibly network configurations
- Individual and Collective Information
 - We introduce individual and collective information
- Ratio of individual to collective
 - By changing the ratio of each information,
 - We can control the final representations very flexiblty

Individual Information Control

- Individual control
 - Neurons and connection weights are individually treated
 - All components are individually and independently changed
 - This control can be used to change internal weights in detail

Collective Information Control

- Collective treatment
 - A set of neurons and connection weights are treated as a group
 - Information is defined for this group
 - A group of components are controlled
 - This control can be used to change connection weights roughly

Combination of Individual and Collective Information

- Controlling the ratio of individual to collective information
 - z (individual) and v (collective) are changed
 - By changing the parameter alpha
 - We can have a variety of internal representations

$$d_{jk}^{(2,3)} = \alpha z_{jk}^{(2,3)} + \bar{\alpha} \bar{v}_k^{(3)}$$

Application to Bankruptcy Data Set

- 10 hidden layers with 10 neurons
 - To demonstrate intuitively the performance
- Average results with 10 runs with different initial conditions and different subsets of data set

Individual and Collective Information

- Individual information (left)
 - remained to be small
- Collective information (middle)_{st}
 - Increased gradually
- Ratio of individual and collective (right)
 - increased gradually in the end

Controlling Information

- Sparse weights
 - The number of stronger connection became smaller
- For a limited parameter area
 - Parameter should be from 0.1 to 0.6

Collective Weights

- Compressed weights
 - were close to correlation coefficients between inputs and targets of original data set
- Disentangle weights
 - Weights were disentangled to be independently distributed

Outline

• Problems of interpretation

- Understanding cognitive functions, Critical decision making, improving generalization
- Difficulty to interpret the main mechanism of neural networks

Collective interpretation

• Interpreting neural networks, considering all possible representations generated by learning against conditional, individual and intuitive interpretation

Network compression

- For easy interpretation, we compress multi-layered numeral networks into the simplest ones without hidden layers
- In addition, partial compression is used to see the state of intermediate layers

• Combination of Individual and Collective Information

• To control information more flexibly for better interpretation, we introduce two types of information, namely, individual and collective information, and control them flexiblty

Application to bankruptcy data set

• We could detect **linear and independent relations** between inputs and outputs, hidden in complicated non-linear relations

Conclusion

- More exact relations between individual and collective information
- More exact relations between correlation coefficients and collective weights