

The Architecture of a Software Framework for Biologically-Inspired Optimization Algorithms

Florin Leon, Silvia Curteanu

"Gheorghe Asachi" Technical University of Iași, Romania {florin.leon, silvia.curteanu}@academic.tuiasi.ro Overview

- Motivation
- System architecture
- The algorithms
- Conclusions and future work

Motivation

- Biologically-inspired optimization algorithms: general, simple, and robust techniques that can be used when other mathematical optimization methods cannot be applied
- There are many classes of such algorithms
- There are many separate implementations
- Our goal is to integrate algorithms from diverse classes, from human social and learning behavior to virus behavior, into a consistent .NET optimization framework (HAVOC)

GUI and sample results

From Human to Virus: Optimization Algorithms with Applications in Chemical Engineering (HAVOC) Problems Baseline Algorithms Program Help Sphere2 selected as the current problem Solving Sphere2 with Teaching-Learning Based Optimization Algorithm... [0.000, 0.000] => 0.0001000 evaluations, 118,996 seconds Ackley(5) selected as the current problem Solving Ackley(5) with Teaching-Learning Based Optimization Algorithm... [0.000, 0.000, 0.000, 0.000, 0.000] => 0.0001000 evaluations, 186,889 seconds Griewank2 selected as the current problem Solving Griewank2 with Teaching-Learning Based Optimization Algorithm... [0.000, 0.000] => 0.0001000 evaluations, 108.570 seconds Rosenbrock2 selected as the current problem Solving Rosenbrock2 with Teaching-Learning Based Optimization Algorithm... [1.000, 1.000] => 0.0001000 evaluations, 81.402 seconds

The algorithms selected for implementation

Category	Algorithm	Encoding
Algorithms inspired by	Simplified Human Learning Optimization (SHLO)	binary
the human behaviors of	Social Learning Optimization (SLO)	real
learning and cooperation	Teaching-Learning based Optimization (TLBO)	real
Algorithms inspired by	Football Game Algorithm (FGA)	real
human competitive	Volleyball Premier League (VPL)	real
behavior	Imperialist Competitive Algorithm (ICA)	real
Algorithms inspired by	Viral System (VS)	binary
virus behavior	Virulence Optimization Algorithm (VOA1)	real
	Virus Colony Search (VCS)	real
	Virus Optimization Algorithm (VOA2)	real

Algorithms inspired by the human behaviors of learning and cooperation

- Simplified Human Learning Optimization (SHLO)
- Social Learning Optimization (SLO)
- Teaching-Learning based Optimization (TLBO)

Algorithms inspired by human competitive behavior

- Football Game Algorithm (FGA)
- Volleyball Premier League (VPL)
- Imperialist Competitive Algorithm (ICA)

Algorithms inspired by virus behavior

- Viral System (VS)
- Virulence Optimization Algorithm (VOA1)
- Virus Colony Search (VCS)
- Virus Optimization Algorithm (VOA2)

Conclusions

- HAVOC architecture
 - Extensible
 - Facilitates comparisons on benchmark and real-life problems
 - Uses .NET
- Future work
 - Study of baseline and new algorithm variants
 - Hybridization with other AI techniques
- Applications in chemical engineering
 - Substitute for costly experiments
 - Propose necessary conditions for maximum performance