

The Tenth International Conference on Intelligent Systems and Applications, INTELLI 2021, July 18 to July 22, 2021, Nice, France, https://www.iaria.org/conferences2021/INTELLI21.html



**Keynote Speech** 

### **Current Research Directions in Social Robotics to Substitute Human Empathy in Elderly and Patient Care**



Arvind Bansal Professor, Department of Computer Science Kent State University, Kent, OH, USA email: arvind@cs.kent.edu



### **Motivation and Acceptability**

- Severe anticipated shortage of healthcare / elderly care assistants due to negative population growth in developed countries
  - annual cost of pain management in USA: \$600 billion (Chapman and Beach, Health Communications, vol. 35, 2019)
- Three major aspects for human acceptability of social robotics
  - functionality: assisting without dominating or giving them the feeling of over dependency
  - interaction: comprehending human-actions, intentions, emotions and unexpressed feelings such as pain, irritation, frustration and communicating empathetically
  - human-acceptable form: comparable to actual form in the real world for companionship, daily activities help, medication, guidance, communication with outside world



### **Outline and Acknowledgement**

Requirements / research / unaddressed issues for empathy in social robotics

- emotion analysis; pain analysis; gesture analysis
- empathetic haptic gesture generation
- dialog analysis/generation
- e-skin and haptics for empathy and social touch
- bipeds balancing

 Acknowledge all researchers whose contributions could not be cited in this limited space presentation.



### **Elderly Care**

### Companionship

- interacting with them meaningfully reading a book
- Support failing eyesight
  - keeping them connected with the world news, friends and kins
  - nonobtrusive guidance while walking

### Supporting failing muscles

- continuous nonobtrusive monitoring such as falling / preventing falling
- helping them feel independent of kins and caretakers
- helping them with daily needs: bathing, cooking, feeding (if needed)

Supporting failing memory: functional, short term, comprehension, procedural

- helping them with medication, appointments, names of persons
- learning and helping with daily routines such as evening walks



### **Patient Care**

### Mental Health - cognitive impairment

- Rehabilitation such as stroke, war-related damage, accident
  - upper and lower body dysfunction
  - speech therapy
  - gait improvement
- Disability assistance
- Patient transportation
  - bed to armchair / wheelchair and back; escorting patient
- Assisting daily activities
  - supporting bed to floor; bath assisting; feeding; supported walking
  - supporting medication / vital signs monitoring
  - human activity recognition to prevent fall; helping to get up from lying and sitting posture; collision avoidance in a constrained environment



### **Disability Assistance**

#### Helping with sensory limitations of elderly / patients

• night vision, blurry vision, hearing problems, temperature sensing problems (during bathing)

#### Enhancing muscle capability

- monitoring, predicting and warning before anticipated accident (fall)
- muscle stabilization as in Parkinson disease during walking and feeding
- body stabilization as in learning to walk after stroke / paraplegia
- holding objects / lifting objects
- transporting and lifting heavier object without relinquishing human control
- Comprehending and improving degraded dialogs of elderly
- Making suggestions and asking for permission before acting
- Learning from daily activities to fill in for memory loss caused by dementia / Alzheimer's



### **Functionality vs Empathy**

#### Current research focus is on functionality

- human nurse = functionality + empathy
- empathy largely ignored by AI researchers

#### Functionality is in early stages despite two decades of research

- basic interaction capability and sensor-based perception
- limited emotion understanding or generation (not much multimodal integration)
- limited hand / head gesture analysis; almost no meaningful co-speech human gesture generation
- basic hand motion and grasping with limited haptics capability

#### Elderly / patients need empathy

- compassion, friendliness, feeling, reassurance, warmth, encouragement
- not reminded that they are helpless / overly dependent
- activities / needs to be dynamically predicted and fixed for personal physical challenges
- polite corrections / guidance without burdening or domineering

#### Multiple domain specific research need to be integrated in one human-like humanoid



## **Required Empathy in Nursing**

- Sharing patients/ elderly experience, feelings, pain and difficulties in action
  - being one with observed using mirror neurons (sharing) and cortices (mentalizing)
- Keeping the expectations from elderly / patient simple
- Helping sufficiently but not to make elderly persons feeling belittled
- Expressing compassion
  - tolerate misbehavior / frustration / agitated behavior
  - avoid negative emotion, inciting behavior or reactions
  - showing patience, warmth and tenderness
  - act in advance to relieve anticipated difficulty, pain / distress
- Encouraging dialogs: multimodal affective prosody in response to pain
  - facial expression + speech modulation (tone variation) + choice of positive words (semantics)
  - haptic social touch along with expressing kindness verbally
  - finding creative solutions to the elderly / patients' problems/agitations



# **Required Empathy in Communication**

- Empathy in dialog: listening  $\rightarrow$  comprehending  $\rightarrow$  feeling  $\rightarrow$  speaking / reassurance
  - some require just listening while others want solution / advise
- Speaking to express empathy: caring, tenderness, warmth and reassurance
  - frank, honest and simple with embedded explanations
  - patience against anger, disbelief, moaning, crying, aggression and denial of reality during dialog
  - overcoming hesitation to share

#### Listening is as important as speaking

- listening is both verbal and nonverbal
- comprehending underlying conditions from expressed behavior / emotion (displaced anxiety / pain)
- filtering perceptual distortions due to elderly memory loss or altered reality
- situation assessment

#### Dialog analysis has three major aspects

- technical analysis: syntactic parsing and semantics analysis
- context-based comprehension of ill-explained situation / symptoms
- relating to the patients' underlying conditions from past knowledge (requires reinforced learning)



## **Current Systems vs. Human Nurse**

#### Current systems

- good vision, speech recognition / generation, lower limb balancing / walking (Nao / Atlas)
- limited NLP, gesture generation / hand grasp: (Nao, Erica, Sophia, and now Grace COVID 19 nurse, etc.)

#### Limitations of current systems

- limiting DOF and lack of graceful human-like motion
- high energy consumption by electromechanical / hydraulic systems
- limited distributed skin-sensory perception to attain human-like haptics
- limited interaction functionality: lack of emotion / pain comprehension, gesture analysis/ comprehension, behavior analysis; limited dialog comprehension / generation
- more focus on developing domain specific functionality very far from human empathy
- limited prediction/anticipation capability such as instant support for avoiding patients' fall
- limited situation assessment / perceptional reality of agitated elderly person & patients
- No research in empathetical behavior generation (patience, tolerance, accommodation)



### **Criteria for Acceptance**

No external superiority in function. It might overwhelm elderly / patients

- no complex learning to deal with social robot (it has to be the other way round)
- no additional probing of body than a human nurse would do
- Same amount of care, understanding and tenderness as a human nurse
  - provide emotional safety
- Haptic medical capability
  - injections, measuring / checking vital signs, provide medication, gently lift a patient
  - assessing and predicting pain by facial expressions & paralinguistic vocalization, muscle tension
- Dialog and situational awareness capability along with reassurance capability
- Assist to simulate the same real-world interaction with the surrounding
- Letting the elderly / patient have the feeling of control of the situation



### **Social Robotic Healthcare Assistant**

Vision (face detection) Hand motion Speech recognition Speech generation Limited conversation, vitals monitoring, scene



Image credit: REUTERS, June 2021



Image of Grace taken from <u>Photos: Meet Grace, the healthcare robot COVID-19</u> created | <u>News-photos – Gulf News for illustration, no copyright infringement intended</u>

d  $\operatorname{KENT}_{U N I V E} S$ 

12

7/9/2021

### **Emotion Expression**

#### Plutchik's wheel of emotion

#### Facilitates interaction with the world

 involves temporal lobe, stimulus to Thalamus regulated by cortex based on social conditioning, aging, and bodily feedback

#### Classification

- Ekman's: fear, happiness, sadness, disgust, surprise, anger (Ekman and Friesen, 1977)
- Plutchik's wheel of emotion: Ekman's classification + trust and anticipation based on valence and arousal; mixing of basic emotions. (Plutchik, 1980)

#### Missing mental states

- anxiety, frustration, irritation, impatience, pain, depression, abruptness, confused
- needs multimodal integration for analysis: dialogs, facial expressions, speech modulation, gesture, tears, silence, paralinguistic vocalization, and behavior pattern

Image taken from Wikimedia Commons, public domain
Citations: 1. Ekman and Friesen, "Nonverbal Behavior," Comm. and Soc. Interaction, 1977
Plutchik, "Emotion: A Psychoevolutionary Synthesis," Harper & Row, 1980





7/9/2021

## **Facial Expression Analysis**

#### Limited to Ekman's six basic facial expressions

- disgust, fear, happiness, sadness, surprise,
- mapping facial expressions to FAU (Facial Action Units)
- AI classification techniques such as SVM, CNN, HMM, Bayesian classifiers and their variants
- CNN variants improve recall by 10 15% over FAU models using curated databases and static images
- Real life involves skewed head, head rotation and occlusion
  - occlusion by external objects, shadows, poor lighting, conversational gestures and multi-party interaction
  - modeling moving / rotating head
  - CNN is not rotation invariant
  - apex facial expression image selection during video analysis





### **Real Life Scenarios (Nurses' Views)**

- Images are rotated, skewed, partially occluded due to rotation, lighting conditions, other people and are in continuous motion during conversation
- Imagine the nurses' views in the pictures. They have to assess pain and facial expressions using skewed and rotated face.













## **Multiple Alignment CNN models**

### Two types of layers

- cascade of convolution filters
- multiple second stage ANNs for classification under different alignments





## Handling Motion + Occlusion

#### Problem

 feature-points are occluded with deviation from frontal pose causing performance loss

#### Proposed solutions by researchers

- texture averaging from global and other local patches
- symmetry + attention to recover occluded feature-points
- multiple alignments CNNs: one ANN for each rotational alignment
- combination of multiple alignments CNN, Long Short-term Memory (LSTM) and transfer learning to find out the best mapping of the rotated or skewed postures (Li et al., IEEE Access, vol. 7, 2019)
- Integrate multiple alignment CNN + FACS symmetry based geometric modeling (Ghayoumi and Bansal, Intelli 2021)





Left

Right

Images credit: Bansal and Ghayoumi, Intelli 2021

Citation: Zhang et al., "Facial Expression Analysis Under Partial Occlusion: A Survey," ACM

Computing Surveys, vol. 51, Article 25, 2018

#### **Arvind Bansal**

**INTELLI 2021 – Keynote Speech** 

### **CNN + FACS** for Handling Head Rotation



## **Types of Pain**

Acute pain caused by recent rupture, intrusion, penetration of tissue

- verbally and / or nonverbally by detecting symptoms of distress
- tissue texture and color analysis
- Sudden physiological changes / increase in pain intensity can be detected
  - sweat increases skin conductance; change in skin color
- Chronic pain in joints, shoulder / muscular / surgical / lower back / fibromyalgia
  - not expressed nonverbally unless the intensity becomes high
  - expressed as mood disorder, depression or anger

Transient pain

- injection, sudden stress to tissues
- pain during transferring, ambulation, and repositioning



## **Pain Expression and Detection**

#### Verbal



- paralinguistic vocalizations: pain cries such as arghh\*hhh(\*hm)", sobbing, screaming, moaning, gasping, groaning, grunting, whimpering, noisy breathing (Herman, Weijelberg et. al., 2020, EJP)
- modulated speech associated with paralinguistic vocalization / tears

#### Nonverbal

- gestures such as holding body parts and involuntary grimace with facial-expressions
- physiological activity, such as pallor, flushing, sweating, muscle tension
- altered action or lack of regular actions such as limping or not fully stretching a limb
- trauma signs such as excessive bleeding or bruise signs
- temperature and color change of bruised / inflamed area using Infrared image analysis
- contextual information / scene analysis such as presence of sharp object, fall silhouette detection
- Pain assessment in dementia is a challenge due to limited communication
- Chronic pain gets displaced and expressed differently such as depression and mood disorder



### **Facial Muscles and FAUs in Acute Pain**

- Brows lowerer (FAU 4); Cheek raiser (FAU 6)
- Eye-lids tightener (FAU 7); Nose wrinkler (FAU
- Nasolabial deepener (FAU 11);
- Upper lip raiser (FAU 10); Lip corner puller (FAU 12)
- Lip stretcher (FAU 20); Lips part (FAU 25)
- Jaw drop (FAU 26); eye-lids droop (FAU 41)
- Eyes closed (FAU 43); blink (FAU 45)



Image taken with written permission from Professors Craig and Prkachin Citation: KD Craig, KM Prkachin, RE Grunau, <u>The facial expression of pain.</u>, In D. C.Turk & R. Melzack (Eds.), *Handbook of pain assessment* (pp. 117–133). The Guilford Press, 2011



scope prime in white

# **Automated Analysis of Acute Pain**

- Physiological methods: Epidermal conductance increase during pain (EDA)
  - (Gunther et al. 2016, Acta Anaesth. Scandinavica)
- Computational classification techniques of facial expression analysis
  - SVM, mixed Gaussian, CNN + transfer learning, and FAU analysis
  - Multiple datasets: CK+, UNBC-McMaster and Willkie's cancer patients' dataset
  - Transfer learning handles variations in pain dataset belonging to different subjects
- Multimodal integration: EDA + Facial expression
  - (Susam et el., EMBC 2018)
- Issues in facial expression analysis
  - overlapping FAUs for facial expressions and pain
  - face may be skewed or partially occluded
  - intensity is subjectively expressed
  - chronic pain gets displaced and not expressed directly
- No research on signal processing of paralinguistic vocalization associated with pain









### **Health-related Haptic Gestures**

#### Function related

- pressing arm for injection / drawing blood
- pressing body parts to test for pain
- cleaning wound and applying bandage
- supporting the patient to stand/walk

#### Empathy related

- wrapping arm around patient to provide support / reassurance
- holding hands to show warmth or guidance
- massaging body part for blood circulation
- raising the patient gently from lying position to sitting position









# **Gesture Analysis by a Human Nurse**

- Helping with daily activities: walk / eat breakfast / take medicine / bath
  - helping in anticipation
  - analyzing support organs contact with surface, posture and gait
- Pain assessment
  - analyze hand / head gestures for pain / localization
  - muscle tightening, pain facial expressions and paralinguistic sound
  - knowledge of other symptoms and abnormal gait / human activity analysis
  - localization of pain by applying measured pressure

#### Situation assessment

- depression may be expressed by posture
- comprehending silent gesture for request to help
- anxiety assessment: fist tightening, clasped hands, gaze avoidance
- Question: where does it hurt?
- Reassurance: Honey, It will just pinch a little!



Haptic gesture + pain analysis





Image taken from Wikimedia Commons – public domain

#### Arvind Bansal

**INTELLI 2021 – Keynote Speech** 

### Hand Gesture Classification for Empathetic Healthcare





# **Required Haptics for Social Touch**

#### Social touch

- force sensing, pressure sensing, vibration sensing, temperature sensing
- fingers, palm: pressure sensing, temperature sensing, vibration sensing (counting pulse)
- arm: force sensing for providing support to patient / elderly
- flexible sensors embedded in elastomers
- Perception and monitoring of localized sensors in real-time
  - sensor feedback and integrated analysis with vision and sound
- Movements of micromotors groups to express different social touch
- Motion analysis to predict anticipated fall using force sensor in arms / vision
  - flexible rigidity to provide just enough support
- Motion analysis in proximity
  - posture / gait perturbation analysis to predict imbalance or failure to change posture



## **Required Research for Soft Haptic Hand**

#### Flexible e-skin related research

- elastomers (hydrophobic silicone polymers) to provide thin sensory deformation resistant e-skin
- flexible micro and nano sensors embedded in e-skin for optimum distributed force: piezoelectric, resistive, capacitive, triboelectric
- mapping sensors for optimum sensory perception
- soft hand gripping and grasping for applying optimum force
- self monitoring for damage detection, nanostructured pathways for feedback and self-repair (Khatib, Zohar et. al. Advanced Materials, 2020)

#### Movement of hands in a constrained environment

- improving degree of freedom specially fingers and thumb movement / coordination
- collision avoidance in constrained environment
- avoiding entanglement with wearable devices
- Fast alignment with optimum human-like haptic force is missing



### **Gesture Analysis/ Generation Research**

- Limited classification of hand-gestures in psychological domain
  - haptics gestures and pain gesture classification still not addressed
- Gesture analysis is limited to a subset of hand-gesture and head gestures
  - synchrony in head-gestures recognition is just being addressed (Singh and Bansal, FTC 2021)
  - Multiple AI techniques for hand gesture analysis: CNN + LSTM, DBN, HMM, depth silhouette
- Limited head-gesture / hand gestures generation in humanoids
  - limited grasping and arm motion arthritic gait analysis of pelvic / knee joints
  - DOF unsuitable for haptics operations such as injection / wound cleaning / supporting a patient or testing pain
  - lacking social touch capability to express warmth / reassurance or micro-pressure sensing capability for injection, drawing blood, etc.
  - 36 head gestures with limited speech demonstrated by Singh and Bansal (2019)
- Pain-related gestures analysis with paralinguistic vocalization still not addressed



## **Required Dialog Analysis**

- Patient's dialog may be disoriented due to pain / agony / personal beliefs / lack of medical knowledge / social withdrawal or their combinations
- Varying time to explain the same phenomenon by different patients
- Dialog analysis requires
  - using ontology to translate patients' description to medical terms and vice versa
  - consistency verification using verified medical knowledge base
  - removal of the noise caused by patient's belief/perception / knowledge / explanation
  - summarization
  - assessment of the patient's mental state / mood for filtering out displaced behavior
  - corpus analysis to detect words and phrases related to anxiety / pain / agony / frustration
  - integration with speech modulation analysis to detect anxiety / pain / agony / frustration
  - picking distress (such as cancer patients) related cues and sensitivities from multimodal analysis – requires learning patients' traits
  - recording electronically into patients' database using standardized database format



# **Required Empathy in Dialog Generation**

Silence and tenderness – not every patient's dialog needs a speech response

- use of age / gender / culture specific reassuring words
- ensuring that patient feels being tended to
- substituting words by haptics for reassurance: holding hands / arms around shoulders
- Explanation capability embedded in dialog generation
  - large percentage of patients are hesitant to ask questions

#### Dialog generation requires

- ontology + knowledge base of patients' knowledge to explain related medical knowledge
- filtering out information that may arouse anxiety / agony
- summarization with embedded explanation
- active medical information sharing, including information on computer screen
- integration with co-speech haptic gestures for reassurance
- accessing Internet and medical database like Alexa to answer patients' simple queries
- using encouraging positive words for participation / reassurance mixed with listening



### **Dialog Analysis Research**

#### Dialog analysis

- frame based semantic studies
- limited co-speech hand-gesture and dialog alignment studies (Wagner et el, Speech Comm., 2014)
- modeling dialogs using conceptual dependency and predicate logic
- anaphora resolution (pronoun disambiguation)
- summarization and topic extraction using latent semantic analysis

#### Recent research for empathy in dialog analysis

- LSTM and attention based dialog generation to maintain context
- emotion expressive encoder-decoder: (utterance, speaker) 
   emotion + GAN (Generational Adversarial Network) / reinforcement learning

#### Issues largely unaddressed

- personality factors in elderly / patients: Introvert/extrovert; friendliness; conscientiousness; emotional stability; openness
- behavior alterations with emotional state, anxiety, anticipation, and displaced pain



# **Biped Balancing for Social Robots**



Timing and IMU

Current technology: Atlas (Boston Dynamics) and/or Nao (CMU)

- general balancing during walking: IMUs to measure pitch, roll and yaw; inverted pendulum
- external continuous force resistant balancing (Kim and Lee, Robotica, 2015)
- real-time balancing on slippery / uneven surface (yaw control, CoM/ ZMP, foot rotation measurement, change in angular momentum, measuring gait perturbations)
- balancing while picking /grasping small objects (combining ankle movement + hip pushed backward + stepping forward strategy (Shen et al., IEEE access 2020)
- fall recovery by pushing back and joint movements

#### Needs significant improvement

- adaptive balancing / walking while supporting patients (sudden & persistent external force)
- human-like elegance during walking emulating human pelvis (Ohnuma, Lee and Chang, Intel Serv Robotics, 2017) – adaptive COG, nonlinear tilt and rotation; currently excessive torque on knee / ankle actuators
- medical scene analysis and object recognition to avoid small obstacles in a constrained environment like living room or wearable equipment around patient
- long-time lightweight power support with high load / robot weight ratio

Image taken from Wikimedia commons; Credits picture 1: By University of Michigan - (DARPA), Public Domain, Credit picture 2: BodyParts3D made by DBCLS; Creative Commons 2.1



7/9/2021

### Conclusion

There is a need to incorporate empathy related research in social robotics

- automated pain / emotion / behavior analysis
- prediction using gait analysis / activity perturbations
- sensor-based elastomer skin and its mapping for localization and sensory perception
- movements of micro actuators for haptic gesture generation in social touch
- elegant human movements in a constrained environment
- indirect cues analysis for distress in vocalization and dialog analysis
- compassionate behavior generation

