
On the Model Continuity in Control
Systems Design Using DEVS, UML,

and IEC 61499
Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology
Božetěchova 1/2. 612 00 Brno, Czech Republic

koci@fit.vut.cz

https://www.fit.vut.cz/person/koci

ICSEA 2021, Barcelona, Spain, October 3-7, 2021



Presenter - dr. Radek Kočı́

• assistant professor at Faculty of
Information technology, Brno
University of Technology

• teaching
• software engineering
• programming
• artificial intelligence
• operating systems

• research interest includes
• modeling and simulation
• formal models in software engineering
• genealogy databases

• projects
• cooperation on modeling and simulation of technological

processes, co-author of two software tools
• System for creating community genealogical databases
• Virtual power plants – predicting the availability of

cogeneration units
• he was/is a team member of several Czech Science

Foundation projects and EU projects, he led the CSF project
Short Title 2 / 35



Research Group Intelligent Systems

Selected topics and activities
• Simulation Driven Development

• formal models in the system design and requirements
engineering

• validation through simulation / scenarios
• model continuity
• supporting tools

• Agent Systems
• improving the reasoning of agents described by the

Agent-Speak language
• competition of multiagent systems – 2nd place in the first

round
• Genealogy databases and tools

• systems for transcription of parish records
• creation of genealogy models (family trees, . . . )
• TACR (Technology Agency of the Czech Republic) project:

Possibilities of creation of community genealogical
databases with semantic information and uncertainty

Short Title 3 / 35



Introduction

Motivation
• control systems: we suppose tree-level structure:

sensors/actuators, distributed controllers, and a Supervisory
Control And Data Acquisition (SCADA) system

• the standard IEC 61499 for industrial processes and control
systems was established in 2005—it defines a generic model
for distributed control systems based on function blocks

• nevertheless, a uniform procedure including a problem
analysis or requirements specification is not defined

• we aim to describe the whole development process, from
the conceptual models to their implementation following
the Model-Driven Development (MDD) and
Model-continuity principles

• the aim is to have a unified approach independently of the
target implementation environment

Short Title 4 / 35



Introduction

MDD
• the development process is a series of constant refinement

and transformation of models; ideally, more specific models
are generated and, in the last step, the code for a
particular platform

• UML is a standard language for modeling various aspects
of software systems, both in academia and in industrial
development

Model-Continuity
• the simulation model can evolve during the development

process from a pure simulation until its final deployment in
the target environment without re-implementation

• the UML has limited ability to simulate and investigate
models in real conditions

⇒ we need a language/model/tool allowing formal
description and simulation as well as a run-time execution

Short Title 5 / 35



Introduction

DEVS-based Modeling
• the Discrete Event System Specification (DEVS) represents a

combination of formal modeling and simulation
• DEVS is well-defined, intuitive, understandable, and

universal
⇒ the DEVS simulation engine can become the run-time

execution environment

DEVS Simulation Engine
• PowerDEVS is the DEVS-based real-time simulation engine; it

can be used in the role of runtime execution environment
• we also consider the possibility of using other environments

for implementation, e.g., Node-RED flows, or IEC 61499
applications, e.g. the open-source development
environment 4diac with the runtime environment FORTE

Short Title 6 / 35



Related work
UML and the IEC 61499
• some works propose generating IEC 61499 from UML, or

System Modeling Language (SysML), typically from a class
diagram

• other works deal with the behavior of atomic components
and propose a transformation of activity diagrams to the
IEC 61499 execution control charts (ECC)

⇒ we propose a step from UML to DEVS
⇒ we focus on the structure of components and

sub-components; we assume the availability of a library of
well-defined atomic components in the target environment

Conceptual and Simulation Models
• there are approaches that attempt to transform

conceptual models, such as those described by SysML, into
simulation models

⇒ we do not consider the simulation model a goal but a
potential option in the development

Short Title 7 / 35



Presented Approach

The Work Objective
• a uniform modeling methodology for heterogeneous

implementation environments, e.g., 4diac/FORTE,
PowerDEVS, or Node-RED

• the focus on the hierarchical organization of components
and the transformation between similar environments

• we assume the library of well-defined atomic
(domain=specific) components in the target environment

The Proposed Solution
• conceptual modelling using UML use case diagrams and

class diagrams
• creation of Platform Independent Models (PIM)

• using UML class and component diagrams
• using DEVS with the same effect

• direct seamless transition from PIM to Platform Specific
Models (PSM) using DEVS

Short Title 8 / 35



Case Study

Case Study
• central heating with zone valves
• each zone contains a temperature sensor, valve actuator,

and Human-Machine Interface (HMI)
• the zone controller compares sensor data and setpoint

and decides whether to open or close the radiator valve
• the central controller sets the boiler On/Off according to

the state of zone valves; it also contains interface to central
HMI/SCADA

Short Title 9 / 35



Case Study – HMI Example

Figure: Zone HMIs and a central HMI example.

Short Title 10 / 35



Models in the System Design

Conceptual Models
• Use Case Model – to define the system’s requirements
• Domain Model – the system’s conceptual elements

(classes) that are needed to solve individual use cases.

Platform Independent Models (PIM)
• Component Model – a specialization of a structured class;

it can be understood as an entity encapsulating a more
complex structure of classes (and thus other components)
and interchangeable with another component that meets
the required interface

Short Title 11 / 35



Use Case Model

Figure: Use case model of the Case study.

Short Title 12 / 35



Domain model
• ZoneController – sets of conceptual classes covering the

zone controller structure and behavior
• CentralController – sets of conceptual classes covering the

central controller structure and behavior

Figure: Basic domain model of the Case study.

Short Title 13 / 35



Component model – ZoneController
• provided interface ZoneInterface, through which the

component receives external events
• required interface CentralInterface from the connected

components

Figure: Component model of the ZoneController conceptual class.

Short Title 14 / 35



Component model – CentralController
• provided interface CentralInterface, through which the

component receives external events
• required interface ZoneInterface from the connected

components

Figure: Component model of the CentralController conceptual class.

Short Title 15 / 35



Component model – Specific Interfaces
• it is better, especially for clarity, that each event is

associated with an individual port of the component
• we can derive specific interfaces from the original interface

in the component diagram
• each such interface contains only one method

corresponding to the event

Figure: Part of the ZoneController component model having individual
ports for each event.

Short Title 16 / 35



Component model
• a composite component consisting of other

interconnected components
• a simple system consisting of one zone controller
• simple, so-called atomic components, which are no longer

further divided into internal parts, can be described by
some of the behavior models, or another suitable formalism
can be attached to them

Figure: System component model.

Short Title 17 / 35



Models in the System Design

Platform Independent Models (PIM)
• Component Model – a specialization of a structured class;

it can be understood as an entity encapsulating a more
complex structure of classes (and thus other components)
and interchangeable with another component that meets
the required interface

• DEVS Model – similar effect can be achieved with the DEVS
formalism

Platform Specific Models (PSM)
• DEVS Model – it allows model continuity from PIM; it can be

directly simulated with a suitable tool and considered an
actual control system model and its implementation

Short Title 18 / 35



From UML Component Model to DEVS

Model-Continuity
• we can create the same component diagram using the

DEVS formalism
• DEVS can represent both the model and the

implementation of a specific system
• we can systematically derive implementation for a specific

platform, like PowerDEVS, Node-RED, or 4diac/FORTE.
• the DEVS PIM and PSM models merge – they differ mainly in

the implementation of atomic components.

PowerDEVS
• PowerDEVS model can be directly used for implementation

and deployment
• simulator works in real-time mode, with hadrware and

network interface components connected

Short Title 19 / 35



PowerDEVS model (1/3)

Figure: PowerDEVS model of the system.
Short Title 20 / 35



Figure: PowerDEVS model of central controller.

Short Title 21 / 35



PowerDEVS model (3/3)

Figure: PowerDEVS model of zone controller.

Short Title 22 / 35



From DEVS to Node-RED

Why?
• coordination level of IoT system can be modeled and

implemented using Node-RED (soft real-time is sufficient)

How?
• flows can be hierarchically organized (like in DEVS)
• input ports are modeled by adding topic to messages

(using ”change” nodes in the flow)

Short Title 23 / 35



Node-RED model (1/3)

Figure: Node-RED model of the system.

Short Title 24 / 35



Node-RED model (2/3)

Figure: Node-RED model of central controller.

Short Title 25 / 35



Node-RED model (3/3)

Figure: Node-RED model of zone controller.

Short Title 26 / 35



From DEVS to IEC61499

Why?
• industrial standard
• real-time features
• native support for distributed deployment

How?
• deal with data ports and event ports (see next slides)
• adapt the connection of the output ports of components

to the input ports of other components (in some cases, we
have to include split and merge components)

Short Title 27 / 35



IEC 61499 - block inteface

Figure: Interface of Central controller. To be DEVS-compatible, each
data input and output has its associated event.

Short Title 28 / 35



IEC 61499 model

Figure: IEC 61499 model of the system.

Short Title 29 / 35



IEC 61499 model - distributed version
Distributed application
• the application can be distributed - let’s suppose two hosts
• we need to specify mapping components to hosts and

add communication and initialization components (service
interface blocks) - see next slides

Figure: IEC 61499 distributed system model. One RPi hosts Central
controller and Zone 1 controller, The second one hosts Zone 2
controller.

Short Title 30 / 35



IEC 61499 model - distributed version

Figure: IEC 61499 model of the system - distributed version. Different
component colors mean that they are mapped to different nodes of
the distributed system. Dotted lines model network connections.

Short Title 31 / 35



IEC 61499 model - distributed version

Figure: Zone 2 controller with and interface to central controller is
deployed on Raspberry Pi 2.

Short Title 32 / 35



Conclusion

We have presented
• the transition from a conceptual model through a

platform-independent model to platform-specific models in
several environments usable for control applications

• the initial modeling tool was the UML language, which is
followed by the DEVS formalism

• the the transition from DEVS to three implementation
environments

• the approach supposes an existence of library of
well-defined atomic components (domain-specific, e.g.,
smart-home)

Short Title 33 / 35



Conclusion

Contribution
• the continuity of the DEVS model in all considered

implementation environments
• the transformation of the DEVS model into the target

environment is based on relatively simple rules, and the
original structured DEVS model is retained

• a uniform modeling methodology for heterogeneous
implementation environments, e.g., 4diac/FORTE,
PowerDEVS, or Node-RED

Future work
• combination with existing techniques for transforming

atomic components specified by state charts, Petri nets,
etc.

• validation in more complex environments, e.g., with more
demanding real-time requirements, or in combination with,
e.g., Robot operating system (ROS)

Short Title 34 / 35



Thank You For Your Attention !


