Reverse Engineering Models of Concurrent Communicating Systems From
Event Logs

Sébastien Salva (sebastien.salva@uca.fr)
LIMQOS, Clermont Auvergne University, France

LiMos &5

Sixteenth International Conference on Software
Engineering Advances, oct. 2021

Who am |?

Public void setUp(){
ldentity id=new Identity(“salva’);}

Public void testid (){

assertEquals(id.surname, "sébastien’’);

assertEquals(id.name, "’salva”’);

assertEquals(id.labo, ”LIMOS”);

assertEquals(id.univ ”University Clermont Auvergne, France”);

27 4O 27 1)

assertArrayEquals(i.recherche, new String[] {“testing”’, “security”’, ”"model learning”,
”services”il);

}

ICSEA 2021 sebastien.salva@uca.fr 2/22

Introduction

3/22

Introduction

Model Learning :
* Generation of behavioral models from a black box application (by retro-engineering).

Use of Models? : for documentation, analysis, auto generation of some test cases, etc.
Several limitations:

 Need of Working app. or execution traces

« Difficult to extract accurate conversations (a.k.a. sessions) when applications are made up of
concurrent components

* May build spaghetti models (unredable and large models)

Introduction

Assumptions :

e System under learning = Concurrent Communicating Systems made up of components
* No knowledge of the components

e correlation mechanisms employed to propagate context IDs and keep track of the process
contexts among components

 But, we don’t know them

Proposal:

* Passive model learning approach and tool to recover Input Output Labelled Transition
Systems (IOLTSs) from event logs.

e Algorithm to automatically retrieve conversations along with correlations from event logs

Paper presentation

Overview
Conversation Extraction from event logs

Model Generation
(preliminary) Evaluation
Conclusion

s W e

Big Picture

Event Log

/login(from:="cl", to:="ShopS", id:="tocken",
account:="1")

ok (from:="ShopS", to:="cl", id:="tocken"
trans:="t1")

Jorder (from:="cl", to:="ShopS",
trans:="t1",item:="a")

/stock (from:="ShopS", to:="Stocks",
trans:="t1", item:="a"

ok (from:="StockS", to:="ShopS", trans:="tl1",
item:="a")

ok (from:="ShopS", to:="cl",
trans:="t1", content:="stock")

/supply (from:="ShopS", to:="WS", trans:="t1",
key:="k1",item:="a")

ok (from:="WS", to:="ShopS", trans:="tl",
key:="k1")

/supplyWs (from:="WS", to:="WS1", key:="k1",
key2:="k2", item:="a")

/supplyWs (from:="WS", to:="WS2", key:="k1",
key2:="k3", item:="a")

/supplyWs (from:="WS", to:="WS3", key:="k1",
key2:="k4", item:="a")

ok (from:=WS1,to:="WS", key:="k1", key2:="k2"

ok (from:=WS2,to:="Ws", key:="kl", key2:="k3"

Unavailable (from:="Ws3",to:="WS", key:="k1",
key2:="k4")

/login(from:="cl", to:="ShopS", id:="tocken2",
account:="12")

ok (from:="ShopS", to:=cl, id:="tocken2",
trans:="t2")

Jorder (from:="cl", to:="ShopS",
trans:="t2",item:="b")

ok (from:="ShopS", to:="cl", trans:="t2"
content:="no stock")

Correlaton Ids &

Conversation
Extraction

Corr keys
:={id, key,key2}

Conv:={

/login() ok()
Jorder() /stock()
ok() ok()/supply()
ok()
/supplyWs()/supp
lyws()
/supplyWs() ok()
ok() unavailable(),

/login() ok()
Jorder() ok()

}

|:> Trace
Partitionning

IOLTS [O]NIS
Generation Generalisation

5 components

5 trace sets:
T(SS)

T(WS)
T(St)}
T(WS1)
T(WS2
T(WS3

ICSEA 2021 sebastien.salva@uca.fr

?/stock ?/supplyWws
lok lun.
?/supplyWs ?/supplyWs

Conversation Extraction

How to find Correlation keys ?
e Using a brute- force search: time consumming, not effiscient -> No

e Our proposal: algorithm is based upon a formalisation of the notion
of correlation patterns and guided towards the most relevant
conversation sets by evaluating conversation quality.

Conversation Extraction

Correlation patterns :

* Key based correlation:

¢ //Ogin(from:=”Cl”, to:=”$hop5”, id::”tocken”l account:znl”) Ok(from:zllshopsnl
to:="cl", id:="tocken" trans:="t1")

Chained correlation: \

o Jorder(from:="cl", to:="ShopS", trans:="t1" item:="a")

Function based correlation ans Time-based correlation
» /login(t:= 1) ok(t:=1) /order(t:=1) with t= floor(time(event)/T, T=5s

Conversation Extraction

From Correlation patterns & Conversation quality

* From patterns, extraction of conversation invariants = properties on
conversations and correlation key sets that must hold

* Definition of 4 Conversation Quality metrics = metrics between 0 and
1 to express properties of the conversation structures

* Ex: request followed by response ?

Conversation Extraction

Conversation quality metric example :

RegwResp (O —+ 1 m1 evaluates the ratio of requests associated
0 < my (G) — | 9 P()‘ <1 (1) tosome responses
|[Reg(o)|+1
R » i m?2 measures the ratio of responses following
espwnireqg(O)| + a prior request

[Resp(c)|+1

Conversation Extraction

* Algorithm overview:

1. Coverage of the successive events of an event log and search for
potential correlation keys

-> several candidates

2. Computation of invariants and quality metrics
3. If invariants do not hold or low quality remove candidate

4. Go back to 1 for every living candidate

Conversation Extraction

LOG EXAMPLE

/login(from:="cl",
to: -"ShopS"

id: -"tocken
account: -"I")

ok(from:="ShopS",
to:="cl", id:="tocken"
trans:="t1")

Jorder(from:="cl",
to:="ShopS",
trans: -"tl" item:="a"

/stock(from:="ShopS",
to:="StockS",
trans:="t1", item:=" a")

CO := {?/login(from:="cl", to:="ShopS", id:="tocken", account:="I")}

/\

C11 := {?/Iogln(from ="cl",

to:="ShopS", id:="tocken",
account: -"I")'ok(from ="g
hopS", to:="cl",

id:="tocken trans:="t1")}

C111 := {?/login(from:="cl",
to: —"ShopS" id:="tocken",

account:="l" |ok(from "ShopS
, to:="cl", id:="tocken"

trans: -“tl"zg I/order

(trans:="t1'

requests followed by responses
Good quality

ICSEA 2021 sebastien.salva@uca.fr

C12 := {?/Iogm(from:="cl",
to:="ShopS', id:="tocken",
account: -"I")

lok(from:="$ ="cl",
id:="tocken")}
C121 :=

{?/login(from:="cl" to:="ShopS",
id:="tocken",account:="|"),

'ok(from ="ShopS"
id:="tocken"

to:="cl",
I/order

~

/login alone ?
Response followed by request ?
Lower quality 13/22

Conversation Extraction

LOG EXAMPLE

/login(from:="cl", to:="ShopS", id:="tocken",
account:="1")

ok (from:="ShopS", to:="cl", id:="tocken"
trans:="t1l")

/order (from:="cl", to:="ShopS",
trans:="tl1l",item:="a")

/stock (from:="ShopS", to:="StockS",
trans:="tl", item:="a")

ok (from:="StocksS", to:=%"ShopsS", trans:="t1l",

item:="a")
ok (from:="ShopS", to:="cl",
trans:="tl1l",content:="stock")

/supply (from:="ShopS", to:="WS", trans:="tl",
key:="k1",item:="a")

ok (from:="WS", to:="ShopS", trans:="tl1",
key:="k1")

/supplyWS (from:="WS", to:="WS1l", key:="k1",
key2:="k2",item:="a")

/supplyWS (from:="WS", to:="WS2", key:="k1",
key2:="k3",item:="a")

/supplyWsS (from:="WS", to:="WS3", key:="kl1",
key2:="k4",item:="a")

ok (from:=WS1,to:="WS", key:="kl", key2:="k2")

ok (from:=WS2,to:="WS", key:="kl", key2:="k3")

Unavailable (from:="WS3",to:="WS", key:="k1",

key2:="k4")
/login(from:="cl", to:="ShopS", id:="tocken2",
account:="12")

ok (from:="ShopS", to:=cl, id:="tocken2",
transs="c2")

/order (from:="cl", to:="ShopS",
trans:="t2",item:="b")

ok (from:="ShopS", to:="cl", trans:="t2"
content:="no stock")

Corr keys :={id,key,key2}

2 conversations :
Conv:={

/login() ok() /order() /stock() ok() ok()/supply() ok()
/supplyWS()/supplyWS() /supplyWS() ok() ok() unavailable(),

/login() ok() /order() ok()

}

ICSEA 2021 sebastien.salva@uca.fr

14/22

Trace partionning

Detection of components with analysis of emitters and receivers in events
Generation of as many trace sets as components found

Algorithm to segment the conversations into sub-sequences, each capturing the behaviours
of one component only

T(ShopS)={ ?/login() 'ok() ?/order() !/stock() ?ok() 'ok()
Events Example /supply() 20k(), ?/login() lok() ?/order() lok()}
/login(from:="cl", to:="ShopS)
Jorder(from:="cl", to:="ShopS") T(StockS)={ ?/stock() !ok() }
/stock(from:="ShopS",
to:="StockS") ok(from:="StockS", T(WS)={ ?/supply() lok() !/supplyWs() !/supplyWs()
to:="ShopS") ok(from:="Shops", I/supplyWS() ?ok() ?ok() ?unavailable() }
to:="cl").....
all I T(WS1)=T(WS2)={ ?/supplyWs() !ok() }
T(WS3)={ ?/supplyWS() lunavailable() }

|OLTS Generation

Every trace set lifted to the level of IOLTS
1 trace set —> 1 IOLTS obtained by transforming the traces into IOLTS paths having the same
initial state only

T(ShopS)={ ?/login() 'ok() ?/order()
I/stock() ?ok() 'ok() !/supply() ?ok(),
?/login() !'ok() ?/order() !ok() }

ICSEA 2021 sebastien.salva@uca.fr 16/22

IOLTS Generalisation

IOLTS generalisation by merging their equivalent states.

State merging performed by means of the k-Tail algorithm
assembles the states sharing the same k-future, i.e., the same event sequences
having the maximum length k

?/order I/stock

ICSEA 2021 sebastien.salva@uca.fr

17/22

Exemple: Final Results

LOG EXAMPLE

/login(from:="cl", to:="ShopsS", id:="tocken",
account:="1") ? |
ok (from:="ShopS?, to:=%cil™, jd:="tocken™ /Supply 'Ok I/Supplyws
trans:=—"c1w)
/order (from::="cil", to:="ShopS".,
trans:="tl",item:="a")
/stocki(Efrom>="ShopS™, Lo:—"StocksS"™,
trans:=*t1"%, item:="a%)
ok (Exrom:—"StockS",; to:="ShopS®; trans:=2"1%,;
item:="a")
ok (from:="ShopS™,; to:="cl¥,
trans:="t1"%,. content :="stock"™)
/supply (from:="ShopS", to:="WS", trans:="t1",
key:="kl",item:="a")
ok (Exrom:="WSY, to:="ShopS®™; Etrans:="E17;
key:="k1")
/supplyWS (from:="WS", to:="wWsSl", key:="k1",
key2:="k2",item:="a"m)
/supplyWsS (from:="WS", to:="ws2", key:="k1",
key2:="k3",item:="a")
/supplyWsS (from:="WS", to:="WsS3", key:="k1", ?/StOCk 7/Supp|yws
key2:="k4" ,item:="a")
ok (from:=WS1l,to:="WsS", key:="kl", key2:="k2")
ok (from:=WS2,to:="wWsS", key:="kl", key2

Unavailable (from:="WsS3",to:="Ws", key:="k1",
key2:="k4")

Zlogin(from:=""cl®™, to:s="ShopSY, .id:="tocken2",
accounts:=>"1 2"y

ok (Erom:="ShopSY, ‘tos=cl, id:="tocken2",
Eransi="E2")

/order (from:="cl", to:="ShopsS", |Ok |un_
trans::="tE2%, item::="b")

ok (from:="ShopS", to:="cl", trans:="t2" ?/Supplyws 7/Supp|yws
content:="no stock™)

lok lok

ICSEA 2021 sebastien.salva@uca.fr 18/22

(preliminary) Evaluation

Conducted on 6 loT systems integrating varied devices

and gateways communicating over HTTP and UDP

 RQ1: Can the approach extract relevant conversation sets?
* RQ2: What is the performance of our algorithm?

ICSEA 2021 sebastien.salva@uca.fr 19/22

(preliminary) Evaluation

RQ1: Can The Approach Extract Relevant Conversation Sets?

Event logs ~ 2200 events

Manually analysed the event logs S1 to S6-> correct correlation key sets

Computed Precision and Recall on the generated conversations

Correlation Key
Set Recall

Correlation Key
Set Precision

S1

100%

81%

S2

100%

16%

S3

100%

80%

S4

100%

100%

S35

100%

100%

S6

100%

90%

Results: provides good recall and precision, but sometimes
returns several results, choice can be conducted with
quality metrics ordering

(preliminary) Evaluation

RQ2: what is the performance of our algorithm?

1. We took the 20 first conversations of S1 and augmented them using 40 to 10000 events;

y = 5E-06x* +0,0068x +0,4906
R2=0,9997

The curve follows a quadratic curve and reveals that our
approach performs well in practice.

-8 FExec. times

~~~~~~ Trendline

.
..
et
-

0 2000 4000 6000 8000 10000

# events

ICSEA 2021 sebastien.salva@uca.fr 21/22



(preliminary) Evaluation

 RQ2: what is the performance of our algorithm?

2. We measured execution times with regard to the number of conversations in the event
logs from 10 to 200 conversations of 2 events.

1400 y=0,0003x%-0,0181x2 + 0,1858x +2,6524 ,
R?=0,9995 S

1200
cubic polynomial curve, shows that execution times

1000 . . .
fek Times quicker increase with regard to the number of
é’ 800 —— 0 7 conversations.
® 600
400
200
0 @ —

0 50 100 150 200

# conversations

ICSEA 2021 sebastien.salva@uca.fr 22/22



Conclusion

* Design of a model learning approach specialised into the recovery of
formal models from event logs generated by communicating systems
made up of concurrent components

* The generated IOLTS can be later used as documentation or for
automatics analyses (security testing, etc.)

Limitations:

* Need of a good balance between model size, readability and
precision. For instance, the generated IOLTSs may be very large on
account of similar event sequences having different parameter values.



Thanks

e Questions ?

ICSEA 2021 sebastien.salva@uca.fr 24/22



