

Conceptual Modeling to Explore Problem and Solution Space, Illustrated by Examples from Future Energy Systems

ICONS 2021

Gerrit Muller Professor Systems Engineering University of South-Eastern Norway Senior Research Fellow at TNO-ESI, the Netherlands

Speaker Biography

- Gerrit Muller
- worked 20 years in the industry as systems architect
- Since 1999, he worked in research and education in close cooperation with industry.
- In 2008, he became professor systems engineering at USN.
- Since 2020, he is INCOSE Fellow an Excellent Educator at USN.

Specific interests

- Systems Architecting, Conceptual modeling
- Education in Systems Engineering
- Research in Systems Engineering
- Connecting Education, Research, and Practice
- Sustainability

Figure of Content

As-Is: System Model Calculates Optimum

Problem: No Understanding, No Reasoning

Designers explore and find an optimum,

however, they lack understanding.

- How sensitive is the model for parameter or data changes?
- How do we reason about use cases?
- How do we reason about options and risks?
- What happens when we make wrong assumptions?

A Model of the As-Is Energy System

Main Questions about the Renewable Energy System

What Architecting Means do we need?

What methods, techniques, formalisms, models, and tools

will help us to create and explore problem and solution space

to understand, communicate, reason, and facilitate decision making,

with many diverse stakeholders and

a large set of complicated technology options,

ranging from idea stage to fully mature,

in a complex natural environment?

Conceptual Modeling

First Principle Models

First principle model: a model based on **theoretical** principles.

A first principle model **explains** the desired property from first principles from the **laws of physics**.

A first principle model **requires values** for **incoming parameters** to calculate results.

Empirical Models

Empirical model: a model based on **observations** and **measurements**.

An empirical model **describes** the observations.

An empirical model provides **no understanding**.

Conceptual Models

Conceptual model: a model **explaining observations** and **measurements** using a selection of **first principles**.

A conceptual model is a **hybrid** of empirical and first principle models; **simple** enough to **understand** and to **reason, realistic** enough to make **sense**.

Mental Models

Mental Models are models in our **human brains**. These models depend entirely on the **individual** and his/her background

Mental models help us to *think*.

Individuals may have a verbal or visual orientation, they may think in concrete or abstract ways, etc.

Simulations

Simulation: an executable model based on first principle and empirical models.

Designers run simulations to **explore**, **analyze**, and **gain insights**.

A simulation provides **understanding**, when **the users transform** the outcomes into **insights**.

		simu	ulatio
dt	0.2	s	
vmax	2.5	m/s	
amax	1	m/s2	
	s (m)		a (m/s2)
0	0	0	1
0.2	0.02	0.2	1
0.4	0.08	0.4	1
0.6	0.18	0.6	1
0.8	0.32	0.8	1
1	0.50	1	1
1.2	0.72	1.2	1
1.4	0.98	1.4	1
1.6	1.28	1.6	1
1.8	1.62	1.8	1
2	2.00	2	1
2.2	2.42	2.2	1
2.4	2.88	2.4	1
2.6	3.38	2.6	0
2.8	3.90	2.6	0
3	4.42	2.6	0
3.2	4.94	2.6	0
3.4	5.46	2.6	0

Product Structure and Documentation

The **Product Structure** prescribes the **parts hierarchy**. Each part in the hierarchy has associated **documentation** and **information** for the entire **life cycle**.

The Product Structure and associated documentation help the organization to *manage* all processes from creation to decommissioning and recycling, via **ERP**, **PDM**, **PLM** etc. systems.

Map of Various Model Types

17

Case

Starting Point: Irish Energy Data

NI: Northern Ir IE: Ireland DateTime	celanc GMT Offset	NI Generation	NI Demand	NI Wind Availability	NI Wind Generation	NI Solar Availability	NI Solar Generation	IE Generation	IE Demand	IE Wind Availability	IE Wind Generation	SNSP
01-01-2020 00:00	0	805.808	736.418	268.222	267.818	0	0	2708.45	3035.95	331.08	324.1	21.3
01-01-2020 00:15	0	808.93	727.636	271.798	272.509	0	0	2757.59	3001.06	332.35	324.88	19.8
01-01-2020 00:30	0	799.635	715.448	264.655	264.816	0	0	2765.93	2956.65	326.64	318.97	19.2
01-01-2020 00:45	0	781.243	704.161	256.279	255.498	0	0	2741.16	2912.98	319	311.37	18.7
01-01-2020 01:00	0	828.025	714.902	256.845	257.602	0	0	IRELA				
01-01-2020 01:15	0	852.065	708.819	265.536	265.553	0	0	INELA			inte	a series
01-01-2020 01:30	0	802.759	693.102	269.476	269.548	0	0			•	Donegal •1	Derry
01-01-2020 01:45	0	813.181	680.919	289.076	287.469	0	0		100 m	km 🗾	-	nagh
01-01-2020 02:00	0	829.529	669.815	307.113	305.538	0	0		•			RELA
01-01-2020 02:15	0	838.336	655.935	325.403	324.447	0	0	4	p/	21 7 7	Sligo	IRELA
01-01-2020 02:30	0	845.129	640.637	336.459	334.505	0	0		1	Mayo		
01-01-2020 02:45	0	852.376	624.397	342.903	339.328	0	0			nemara		
01-01-2020 03:00	0	880.49	615.8	366.08	362.413	0	0	ATLAN OCE		Galway	Clonmac	nois
01-01-2020 03:15	0	840.47	605.929	364.687	299.381	0	0	Jen	Aran Island	s Galway	IRELAN	D

https://www.eirgridgroup.com/how-the-grid-works/renewables/

Michael 1952, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0> via Wikimedia Commons

Simulation Using Hydrogen Storage

wind	trace d	lata	us	se	surplus		convert	store/retrieve	
year	day	produc- tion						delta	storage
2018	1	44214	- da	aily	22844		* η _{H2}	11422	700000
2018	2	39969	us	se	18599		-	9300	709300
2018	3	51687	de		30317			15159	724458
2018	4	19293			-2077			-2077	722382
2018	5	15842	213	370	-5528		50%	-5528	716854
2018	6	26849			5479			2740	719593
2018	7	14014			-7356			-7356	712237
2018	8	43098			21729			10864	723101
2018	9	50887			29517			14759	737860

aggregated production			aggregated surplus surplus + surplus -					aggregated store/retrieve			
P .	2017	2018	2017	2018	2017	2018		2017	2018	2017	2018
jan	1179179	842549	583321	337872	-66607	-157789		291660	168936	-66607	-157789
feb	849591	1221703	316200	669854	-64965	-46508		158100	334927	-64965	-46508
mar	881203	1134683	368354	536118	-149616	-63901		184177	268059	-149616	-63901
apr	653040	863695	209203	310924	-197259	-88325		104601	155462	-197259	-88325
may	571785	503499	100599	114026	-191280	-272992		50300	57013	-191280	-272992
jun	322225	544853	78620	122038	-397491	-218281		39310	61019	-397491	-218281
jul	351038	522236	49842	125676	-361270	-265906		24921	62838	-361270	-265906
aug	618113	746528	159892	242967	-204244	-158904		79946	121483	-204244	-158904
sep	832528	710308	319105	262903	-127673	-193691		159553	131452	-127673	-193691
oct	968051	946287	425785	389846	-120199	-106025		212892	194923	-120199	-106025
nov	1270278	710351	659014	232856	-29831	-163602		329507	116428	-29831	-163602
dec	1041645	1100137	466746	530776	-87566	-93105		233373	265388	-87566	-93105
unscaled	9538677	9846828	3736680	3875856	-1998003	-1829028		1868340	1937928	-1998003	-1829028

Block Diagram

Functional Model

Scenarios for Energy Flows

How to utilize the options? demand control direct consumption Β curtail C5 battery storage ĴG5 G4 C4 G2 Hydrogen storage C2 over-sized generation G3 C3 *import, export*

• demand control

Dynamics

Idealized Production and Consumption

University of South-Eastern Norway

Zooming in on Days

Simulation Workflow

Energy Balance without and with Curtailment

Cost

Cost Model; Guestimates, 2019 data

Energy Cost; Curtailment is Lower in Cost!

Energy Cost as Function of H2 Size

Figure of Content

Case Summary

University of South-Eastern Norway

What Conceptual Modeling brings

- transforming data into insights
- using visualizations to reason and to share
- using a wide variety of models
- grasping the dynamics and the emergent behavior and properties
- translating a problem into needs into solution concepts
- transforming solution concepts into application consequences
- and keep iterating until sufficient insight is achieved

Questions?

You can reach me via email:

Gerrit.muller@usn.no

More information:

Gaudisite.nl

https://gaudisite.nl/Sustainability.html

https://gaudisite.nl/SEMAmaterial.html