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Topics of Research Interests     

 Terahertz and millimeter wave communications

 5G NR-U: 5G New Radio on Unlicensed Bands

 Dynamic spectrum sharing and policy for 5G and beyond mobile networks

 Cognitive radio networks and spectrum sensing techniques

 Co-channel interference analysis, mitigation, avoidance, and cancellation strategies

 In-building small cell network planning, design and deployment

 Planning, design and development of spectrum sharing algorithm for homogeneous (mobile

networks) and heterogeneous networks (mobile networks and satellite networks)

 Radio resource allocation and scheduling policy and algorithm

 Mobile MAC layer and physical layer issues

 Proof-of-concept evaluation of virtualization and Slicing of 5G radio access network (RAN)

 Cloud RAN (CRAN) in 5G era

 Fronthaul design for CRAN
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Problem Statement and Contribution (1)    
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PROBLEM Radio spectrum in mobile wireless communications is scarce and very costly.

OVERCOME

(1) A direct, yet effective, way to improve the network capacity of a Mobile Network

Operator (MNO) is to increase the system bandwidth by aggregating spectra in different

bands. In this regard, due to

• the availability of large spectrum and

• the operational and signal propagation characteristics, including high distant-dependent path

loss, low transmit power, small coverage, and presence of line-of-sight (LOS) components,

high-frequency spectra in the range of millimeter-wave (mmWave) bands and terahertz

(THz) bands are considered to operate small cells deployed within a building.

(2) Another major approach to improve the network capacity is to reuse the same spectrum

spatially more than once. In this regard, due to

• high penetration losses from external and internal walls, as well as floors in a building,

the high-frequency spectrum can be reused suitably by forming a 3-dimensional (3D) cluster of

small cells subject to managing Co-Channel Interference (CCI) between co-channel small cells.

• The whole spectrum can then be reused to small cells per 3D cluster.



Problem Statement and Contribution (2)   
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To the best of our knowledge, we first addressed these issues by modeling CCI and

defining a minimum distance between co-channel small cells in a building in both

intra-floor and inter-floor levels to develop a 3D cluster of small cells in order to

• reuse the same spectrum in each cluster in the 2 GHz microwave band in Saha [1].

• In Saha [2], we dealt with managing CCI between co-channel small cells in the 28

GHz and 60 GHz mmWave bands to reuse them in each 3D cluster of small cells.

Following the continuation in Saha [1] and Saha [2], in this paper,

we model CCI in the 140 GHz band

• to define a 3D cluster of in-building small cells in order

• to reuse the THz spectrum of an MNO in each 3D cluster.

RELATED 

WORK

However, comprehensive modeling of interference, as well as clustering of small cells, for reusing 

spectrum in them under the in-building scenario are not obvious

CONTRIBUTION 
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Figure 1. (a) an illustration of the system architecture of MNO 1 with a multistory

building of small cells to reuse 140 GHz spectrum. (b) Intra-floor level clustering

of small cells. Each circle represents a small cell in an apartment.

• We consider a simple system architecture of

an MNO, i.e., MNO 1, in a country as shown

in Figure 1(a).

• MBSs and PBSs operate in the 2 GHz

spectrum,

• whereas all SBSs located in buildings are

operated in the 140 GHz spectrum

140 GHz Indoor Loss Model

We consider the following LOS path loss model for

indoor THz coverage in the 140-150 GHz

 10[ ] 75.89 21.17logPL d d X  

Also, we assume no CCI interference effect from

one adjacent floor to another at the 140 GHz band

due to high floor penetration losses at 140 GHz.
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Co-channel interference modeling
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  

The normalized CCI at a small cell UE in the intra-

floor level and inter-floor level, respectively,

Minimum distance estimation

 
12.117*
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The minimum distances in the intra-floor level

and inter-floor level can be expressed as

Clustering and spectrum reuse factor

raS

eaS

denotes the maximum number of

small cells corresponding to *

rad

denotes the maximum number of

small cells corresponding to
*

erd

The size of a 3D cluster of small cells

deployed across intra-floor and inter-floor

levels is given by

 F ra erS S S 

THz Spectrum Reuse Factor per

building of small cells is given as below.

F,tot FS S 

where denotes the number of small

cells per building.
F,totS
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A link throughput at RB=i in a TTI=t in bps per Hz is

given by
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We consider similar indoor signal propagation

characteristics for all L buildings per macrocell. The

system-level average capacity, SE, and EE per

macrocell of MNO 1 is given by,
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ra,op 0.3  *

ra 23.58 md 

This implies that the spectrum can be reused in co-channel small cells that are away from one

another by at least three apartments each having a side length of 10 m. This corresponds to an

intra-floor cluster size consisting of 9 small cells.

Assume that =>

 f er 55 dBd  er,op 0.1  *

er 0.089 md => =>

This implies that the spectrum can be reused on each floor. 

Hence, we can find that a 3D cluster consists of 9 small cells. So, for a 6-story building with

each floor having 9 apartments, the 140 GHz spectrum can be reused 6 times.

For



Performance Evaluation and Comparison (2)

3/30/2021 11

1 5 9 13 17 21 25 29 33 37 40
10

1

10
2

10
3

Number of Buildings

S
p

ec
tr

al
 E

ff
ic

ie
n

cy
 (

b
p

s/
H

z)

 

 

Reuse Factor = 1

Reuse Factor = 6

(a)

1 5 9 13 17 21 25 29 33 37 40

10
-9

10
-8

10
-7

Number of Buildings

E
ne

rg
y 

E
ff

ic
ie

nc
y 

(J
ou

le
/b

it)

 

 

Reuse Factor = 1

Reuse Factor = 6

(b)

Figure 2. (a) SE and (b) EE responses due to clustering of in-building small

cells and reusing the same spectrum times in the 140 GHz band.6 

Clearly, it can be found that clustering small cells in the 140

GHz band and reusing the same spectrum more than once

improve both SE and EE performances.

Further, it is expected that the 6G mobile systems will

require 10 times average SE [10] (i.e., 270-370 bps/Hz), as

well as 10-100 times average EE [11] (i.e., 0.03×10-6 to

0.3×10-6 Joules/bit), of 5G mobile systems [12]-[13].

Now, from Figure 2, it can be found that the expected

average SE and EE can be satisfied by reusing the

spectrum to less number of buildings of small cells (i.e.,

L=6) than that required (i.e., L=31) when no spectrum reuse

is considered.
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• In this paper, we have presented an analytical model to reuse Terahertz (THz) spectrum to small

cells of an MNO.

• All small cells are deployed within buildings and operate only in the 140 GHz band. Interference from

one small cell to another due to reusing the 140 GHz spectrum has been modeled both intra-floor and

inter-floor levels and the corresponding minimum distance between co-channel small cells have been

derived.

• These minimum distances in the intra-floor and inter-floor level provide the size of a 3D cluster of

small cells.

• We have derived average capacity, spectral efficiency (SE), and energy efficiency (EE) performance

metrics. Extensive simulation and numerical results analyses have been carried out.

• It has been found that the 3D clustering of in-building small cells, and reusing the same spectrum in the

140 GHz band to each cluster improve both the SE and EE performances.

• Moreover, both inter-building reuse factor and intra-building reuse factor have an impact on the overall

performance improvement.

• Finally, we have shown that the presented model can satisfy the prospective SE and EE

requirements for the sixth-generation (6G) networks by reusing the spectrum in less number of

buildings of small cells than that required when no spectrum reuse is considered in the 140 GHz.
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