
OPTIMIZED ARCHITECTURE FOR SPARSE LU

DECOMPOSITION ON MATRICES WITH RANDOM

SPARSITY PATTERNS

Dinesh Kumar Murthy, Semih Aslan

Electrical Engineering, Ingram School of Engineering
Texas State University

San Marcos, Texas, 78666, USA

THE SIXTEENTH

INTERNATIONAL

CONFERENCE ON

DIGITAL

TELECOMMUNICATIONS

ICDT 2021

Agenda

Problem
Statement

Research
Objective

Sparse
Matrices

Why FPGS’s?
Sparse LU

Decomposition
Hardware

Design
Core

Optimization

Synthesis Implementation Error Analysis
Goal

Measurement
Metrics

Conclusion Future Work

Problem
Statement

• Indirect addresses must address the non-zero entries of a
sparse matrix in its index array leading to random accesses that
require more memory transactions and lower cache hit rate.

Indirect
Addressing

• The distribution of zero and non-zero entries are not known in
advance. Pre-allocating memory blocks of a specific size may
waste memory when the intersection of nodes is large.

Memory
Allocation

• This is caused by the lack of temporal locality in the access to
sparse matrices. If the matrix is not structured or blocked, most
of the entries in cache line fetched to get an element remain
unused causing high memory overhead for sparse matrix
operation.

Low Arithmetic
Intensity

Research
Objective

To determine an algorithm
for LU Decomposition by

minimizing gate count,
area, computational time,

latency, number of
multiplication & addition
hardware and to improve

throughput.

The developed
algorithm must be

capable of handling
matrices of various
sizes and should be
simple to implement
and highly scalable.

The primary goal of
the thesis is to

improve efficiency
and reduce the

resources used for the
operation.

Comparison of the
results and investigate
the possible solutions

and approaches for
scaling up the design
for larger matrix more

efficiently.

Sparse Matrices

➢ In numerical analysis, a sparse matrix is a
matrix in which most of the elements are
zero.

➢ Large sparse matrices often appear in
scientific or engineering applications when
solving partial differential equations.

➢ When storing and manipulating sparse
matrices on a computer, it is beneficial and
often necessary to use specialized algorithms
and data structures that take advantage of the
sparse structure of the matrix.

NEED FOR SPARSE FORMAT

Why FPGA’s?

Sparse LU Decomposition

° Sparse LU decomposition is widely used in
numerical analysis and engineering science.

° It factors a matrix as a product of lower
triangular matrix (L) whose diagonal
elements are equal to 1, and all the elements
above are equal to 0; and an upper triangular
matrix (U) whose elements below the
diagonal are equal to 0.

° If A is a square matrix, LU decomposes A
with proper row and/or column orderings or
permutations into two factors.

❖ Circuit Simulation

❖ Power System Modeling

❖ Image Processing

Applications
Common methods include

❑ Left-Looking Algorithm

❑ Right-Looking Algorithm

❑ Crout Algorithm

𝐴 = 𝐿𝑈

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

= 𝑃
1 0 0
𝐿21 1 0
𝐿31 𝐿32 1

×

𝑈11 𝑈12 𝑈13
0 𝑈22 𝑈23
0 0 𝑈33

❖ For maximizing the performance, LU hardware is

designed to focus on maintaining regular computation

and memory access pattern.

❖ The control and memory access handles the operations

performed for decomposing the matrix.

❖ The design ensures the memory will have enough

space to store the values.

❖ The performance of LU decomposition of the sparse

matrix depends heavily on the quality of the placement

tool.

❖ The initial design algorithm is inspired from Doolittle

and the right-looking algorithm for sparse LU

decomposition.

Hardware Design

Block Diagram of Sparse LU Decomposition

Core Optimization

Pivot Operation

• Conducts pivot search for each
matrix elimination step.

• Index pointers are created for
each pivoting to store row and
column address.

• These value are sequentially
checked for absolute maximum
with index.

Update Pivot and interchange
rows

• The update state will be
responsible for computing the
core computations of right
looking algorithm.

• The logic performs normalization
before elimination of the pivot
values.

Update row and column

• First, it indicates if the row or
column is to be updated from
previous state memory.

• It manages the addresses of the
nonzero to be stored.

• This unit operates in parallel for
maximizing the utilization of all
logic units.

Simulation and Synthesis

Design Simulation: LU Decomposition

Implemented Design Engine: LU Decomposition

Error Analysis

The simulated results are compared with
MATLAB results for error analysis and
is denoted as;

𝑒𝑖 = 𝑦𝑖 − ഥ𝑦𝑖

Where 𝑦𝑖 is the actual result from
Vivado Design Suite and ഥ𝑦𝑖 is the result
obtained using MATLAB tool.

𝐿𝑑𝑖𝑓𝑓 =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −0.001 0 0 0 0 0 0 0
0 0 −0.001 0.003 0 0 0 0 0 0
0 0 −0.007 −0.001 −0.002 0 0 0 0 0
0 0 −0.002 −0.001 0.002 0.003 0 0 0 0
0 0 −0.005 −0.001 0.006 0.001 −0.001 0 0 0
0 0 −0.001 −0.002 0.0036 0.001 −0.003 0.009 0 0
0 0 0 −0.002 0.0059 −0.004 0.003 −0.01 0.006 0

𝑈𝑑𝑖𝑓𝑓 =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.004 −0.002 −0.002 0.001 0.003
0 0 0 0 0 −0.005 −0.01 −0.029 −0.026 0.011
0 0 0 0 0 0 −0.00 −0.013 −0.017 −0.003
0 0 0 0 0 0 0 0.017 0.014 0.012
0 0 0 0 0 0 0 0 0.013 −0.009
0 0 0 0 0 0 0 0 0 0.003
0 0 0 0 0 0 0 0 0 0

L = -0.0871 to 0.0357

U = -0.0108 to 0.0057

PRECISION LOSS

𝑳𝑎𝑡𝑒𝑛𝑐𝑦𝑛 𝑛𝑠 = ෍
𝑖𝑛

𝑜𝑢𝑡

𝑐𝑙𝑜𝑐𝑘𝑐𝑦𝑐𝑙𝑒𝑠 × 𝑇𝑚𝑖𝑛(𝑛𝑠)

where n – matrix size, with n=10,20,30, …100;

𝑇𝑚𝑖𝑛 – Minimum Clock Period of the design

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑛(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠/𝑠𝑒𝑐) =
1 𝑠𝑒𝑐 × 1 𝑏𝑖𝑡

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑛
where n – matrix size, with n = 10,20,30, … 100

Goal Measurement Metrics

0 2000 4000 6000 8000 10000 12000 14000 16000

Slice Registers

Slice LUTs

Memory

Occupied Slices

IO

3420

11211

42

3504

40

10863

16,807

64

5455

40

FPGA Resource Utilization Summary

Regular Sparse

Power Analysis: Sparse LU Decomposition

Regular Method Proposed Method

FPGA Resource Utilization: Regular vs Sparse for Sparse LU Decomposition

Input (ns) Output (ns)

Best Case Delay (min) 7.41 6.54

Worst Case Delay (max) 19.68 6.71

Hardware Implementation: Best- and worst-case Delays

Performance Comparison

Conclusion

The overall design was successful as the results were demonstrated with data from the

implementation of LU Decomposition operation.

When comparing the performance to the regular algorithms and implementation, a

significant achievement was made in performance and improved upon.

The design has simple and scalable implementation that consists of a small number of

input and output parameters.

We have explored the optimizations not only for a specific application domain, but to

make a generic architecture to be implemented irrespective of the application domain.

Future Scope
❖ Opportunities for future work includes increasing

the simulations for a variety of benchmark matrices
from all application domains and exploring further
optimization.

❖ Research improvement in this area is needed for
increase in logic resources by comparable increase in
I/O bandwidth and on-chip memory capacity,
especially when the matrix sparsity is unstructured
and randomly distributed.

❖ It would be interesting to seek further optimization
to obtain efficient hybrid algorithms for different
arbitrary matrices.

Thank You

