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Problem 
Statement

• Indirect addresses must address the non-zero entries of a 
sparse matrix in its index array leading to random accesses that 
require more memory transactions and lower cache hit rate.

Indirect 
Addressing

• The distribution of zero and non-zero entries are not known in 
advance. Pre-allocating memory blocks of a specific size may 
waste memory when the intersection of nodes is large.

Memory 
Allocation

• This is caused by the lack of temporal locality in the access to 
sparse matrices. If the matrix is not structured or blocked, most 
of the entries in cache line fetched to get an element remain 
unused causing high memory overhead for sparse matrix 
operation.

Low Arithmetic 
Intensity



Research 
Objective

To determine an algorithm 
for LU Decomposition by 

minimizing gate count, 
area, computational time, 

latency, number of 
multiplication & addition 
hardware and to improve 

throughput.

The developed 
algorithm must be 

capable of handling 
matrices of various 
sizes and should be 
simple to implement 
and highly scalable.

The primary goal of 
the thesis is to 

improve efficiency 
and reduce the 

resources used for the 
operation.

Comparison of the 
results and investigate 
the possible solutions 

and approaches for 
scaling up the design 
for larger matrix more 

efficiently.



Sparse Matrices

➢ In numerical analysis, a sparse matrix is a 
matrix in which most of the elements are 
zero.

➢ Large sparse matrices often appear in 
scientific or engineering applications when 
solving partial differential equations.

➢ When storing and manipulating sparse 
matrices on a computer, it is beneficial and 
often necessary to use specialized algorithms 
and data structures that take advantage of the 
sparse structure of the matrix.

NEED FOR SPARSE FORMAT



Why FPGA’s?





Sparse LU Decomposition

° Sparse LU decomposition is widely used in 
numerical analysis and engineering science. 

° It factors a matrix as a product of lower 
triangular matrix (L) whose diagonal 
elements are equal to 1, and all the elements 
above are equal to 0; and an upper triangular 
matrix (U) whose elements below the 
diagonal are equal to 0. 

° If A is a square matrix, LU decomposes A 
with proper row and/or column orderings or 
permutations into two factors. 

❖ Circuit Simulation

❖ Power System Modeling

❖ Image Processing

Applications
Common methods include

❑ Left-Looking Algorithm

❑ Right-Looking Algorithm

❑ Crout Algorithm

𝐴 = 𝐿𝑈

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

= 𝑃
1 0 0
𝐿21 1 0
𝐿31 𝐿32 1

×

𝑈11 𝑈12 𝑈13
0 𝑈22 𝑈23
0 0 𝑈33



❖ For maximizing the performance, LU hardware is

designed to focus on maintaining regular computation

and memory access pattern.

❖ The control and memory access handles the operations

performed for decomposing the matrix.

❖ The design ensures the memory will have enough

space to store the values.

❖ The performance of LU decomposition of the sparse

matrix depends heavily on the quality of the placement

tool.

❖ The initial design algorithm is inspired from Doolittle

and the right-looking algorithm for sparse LU

decomposition.

Hardware Design 

Block Diagram of Sparse LU Decomposition 



Core Optimization

Pivot Operation

• Conducts pivot search for each 
matrix elimination step.

• Index pointers are created for 
each pivoting to store row and 
column address.

• These value are sequentially 
checked for absolute maximum 
with index. 

Update Pivot and interchange 
rows

• The update state will be 
responsible for computing the 
core computations of right 
looking algorithm. 

• The logic performs normalization 
before elimination of the pivot 
values.

Update row and column

• First, it indicates if the row or 
column is to be updated from 
previous state memory.

• It manages the addresses of the 
nonzero to be stored. 

• This unit operates in parallel for 
maximizing the utilization of all 
logic units.



Simulation and Synthesis

Design Simulation: LU Decomposition

Implemented Design Engine: LU Decomposition



Error Analysis

The simulated results are compared with
MATLAB results for error analysis and
is denoted as;

𝑒𝑖 = 𝑦𝑖 − ഥ𝑦𝑖

Where 𝑦𝑖 is the actual result from
Vivado Design Suite and ഥ𝑦𝑖 is the result
obtained using MATLAB tool.

𝐿𝑑𝑖𝑓𝑓 =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −0.001 0 0 0 0 0 0 0
0 0 −0.001 0.003 0 0 0 0 0 0
0 0 −0.007 −0.001 −0.002 0 0 0 0 0
0 0 −0.002 −0.001 0.002 0.003 0 0 0 0
0 0 −0.005 −0.001 0.006 0.001 −0.001 0 0 0
0 0 −0.001 −0.002 0.0036 0.001 −0.003 0.009 0 0
0 0 0 −0.002 0.0059 −0.004 0.003 −0.01 0.006 0

𝑈𝑑𝑖𝑓𝑓 =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.004 −0.002 −0.002 0.001 0.003
0 0 0 0 0 −0.005 −0.01 −0.029 −0.026 0.011
0 0 0 0 0 0 −0.00 −0.013 −0.017 −0.003
0 0 0 0 0 0 0 0.017 0.014 0.012
0 0 0 0 0 0 0 0 0.013 −0.009
0 0 0 0 0 0 0 0 0 0.003
0 0 0 0 0 0 0 0 0 0

L  = -0.0871 to 0.0357

U  = -0.0108 to 0.0057

PRECISION LOSS



𝑳𝑎𝑡𝑒𝑛𝑐𝑦𝑛 𝑛𝑠 = ෍
𝑖𝑛

𝑜𝑢𝑡

𝑐𝑙𝑜𝑐𝑘𝑐𝑦𝑐𝑙𝑒𝑠 × 𝑇𝑚𝑖𝑛(𝑛𝑠)

where n – matrix size, with n=10,20,30, …100; 

𝑇𝑚𝑖𝑛 – Minimum Clock Period of the design

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑛(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠/𝑠𝑒𝑐) =
1 𝑠𝑒𝑐 × 1 𝑏𝑖𝑡

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑛
where n – matrix size, with n = 10,20,30, … 100

Goal Measurement Metrics
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FPGA Resource Utilization Summary

Regular Sparse

Power Analysis: Sparse LU Decomposition

Regular Method                               Proposed Method

FPGA Resource Utilization: Regular vs Sparse for Sparse LU Decomposition

Input (ns) Output (ns)

Best Case Delay (min) 7.41 6.54

Worst Case Delay (max) 19.68 6.71

Hardware Implementation: Best- and worst-case Delays

Performance Comparison



Conclusion

The overall design was successful as the results were demonstrated with data from the 

implementation of LU Decomposition operation. 

When comparing the performance to the regular algorithms and implementation, a 

significant achievement was made in performance and improved upon.

The design has simple and scalable implementation that consists of a small number of 

input and output parameters.

We have explored the optimizations not only for a specific application domain, but to 

make a generic architecture to be implemented irrespective of the application domain. 



Future Scope
❖ Opportunities for future work includes increasing 

the simulations for a variety of  benchmark matrices 
from all application domains and exploring further 
optimization.

❖ Research improvement in this area is needed for 
increase in logic resources by comparable increase in 
I/O bandwidth and on-chip memory capacity, 
especially when the matrix sparsity is unstructured 
and randomly distributed. 

❖ It would be interesting to seek further optimization 
to obtain efficient hybrid algorithms for different 
arbitrary matrices. 



Thank You


