
OPTIMIZATION OF SPARSE MATRIX

ARITHMETIC OPERATIONS AND

PERFORMANCE IMPROVEMENT

USING FPGA

Dinesh Kumar Murthy, Semih Aslan

Electrical Engineering, Ingram School of Engineering

Texas State University

San Marcos, Texas, 78666, USA

THE

SIXTEENTH

INTERNATIONA

L CONFERENCE

ON DIGITAL

TELECOMMU-

NICATIONS

ICDT 2021

AGENDA

Introduction

Problem Statement

Research Motive

Sparse Matrices

FPGA’s and EDA Tool

Sparse Matrix Addition Operation

Synthesis

Hardware Implementation

Performance Analysis

Results and Discussion

Conclusion

Future Work

INTRODUCTION

❖ Big Data collected has become increasingly important and are

collected from many real-world applications:

❑ Sensors, Social Networks, Portable Devices, Scientific

Experiments.

❖ Graphs are used to model many systems which

are of interest to engineers and scientists today,

through which useful information is extracted.

❖ Once entered a computer, the data from real-

world applications no longer looks like a graph.

❖ Often it is in the form of a sparsely populated

matrix with most zeros compared to non-zeros.

1 2

3

4 7

6

5

❖ Challenge: 1. Graphs can be complicated.

2. The nature of data is sparse.

PROBLEM STATEMENT

• Indirect addresses must address the non-zero entries of a sparse matrix
in its index array leading to random accesses that require more memory
transactions and lower cache hit rate.

Indirect Addressing

• The distribution of zero and non-zero entries are not known in
advance. Pre-allocating memory blocks of a specific size may waste
memory when the intersection of nodes is large.

Memory Allocation

• This is caused by the lack of temporal locality in the access to sparse
matrices. If the matrix is not structured or blocked, most of the entries in
cache line fetched to get an element remain unused causing high
memory overhead for sparse matrix operation.

Low Arithmetic
Intensity

RESEARCH MOTIVE

To determine an algorithm for
various sparse matrix

arithmetic operations by
minimizing gate count, area,
computational time, latency,
number of addition hardware
and to improve throughput.

The developed algorithm
must be capable of

handling matrices of
various sizes and should
be simple to implement

and highly scalable.

The primary goal of the
thesis is to improve

efficiency and reduce the
resources used for the

operation.

Comparison of the
results and investigate
the possible solutions

and approaches for
scaling up the design for

larger matrix more
efficiently.

SPARSE MATRICES

❖ Sparse matrices are at the heart of

Linear Algebraic Systems.

❖ Everything of any significance

happening in a sufficiently complex

computer system will require lots of

Linear Algebraic operations.

❖ You really cannot represent very

large high dimensional matrices

(when most of them have zeroes) in

memory and do manipulations on

them.

Applications

❑ Computer Graphics

❑ Machine Learning

❑ Information Retrieval

❑ Social Networks

❑ Maps

❑ Graph Based Applications

FPGA’S AND EDA TOOL

Reconfigurability

Flexibility

Latency

Connectivity

Energy
Efficiency

Engineering
Cost

The Vivado Design Suite/Xilinx

Integrated Software

Environment(ISE) is the front-end

GUI of the Xilinx tools which are

used to program the FPGA devices

with the user-defined functionality.

Nexys 4 DDR Artix-7 FPGA

SPARSE MATRIX ADDITION OPERATION

♦ The proposed architectural algorithm
performs sparse matrix addition in which
the number of rows and number of
columns of two matrices should be equal.

♦ A parallel implementation of the addition,
with enough fast memory algorithm, is
proposed.

♦ The matrix addition performs the operation
row-wise and column-wise throughout the
matrix only for the nonzero elements
present leaving behind the zeros.

♦ The mathematical representation of the
addition operation is given below:

𝑐𝑖,𝑗 = 𝑎𝑖,𝑗 + 𝑏𝑖,𝑗
FSM Transition States for Sparse Matrix Arithmetic Operation

HARDWARE IMPLEMENTATION

A → n×n sparse matrix

B → n×n sparse matrix
for i → 0 to MAT_SIZE do

if (A[i]≠ 0) then

Indexing row and column = i + 1

A_sv [i] =A [i]

A_index = A_count + 1

end

if (B[i] ≠ 0) then

Index2rc = i + 1

B_index = B_count + 1

B_sv [i] = B [i]

end

if((A_sr[A_index]==B_sr[B_index])&&

(A_sc[A_index] ==B_sc[B_index])) do

Row <= A_sr [A_index]

Col <= A_sc [A_index]

Sum <= A_sv [A_index] + B_sv [B_index]

end

if (A_sv [A_index] ≠0) then

Row <= A_sr [A_index]

Col <= A_sc [A_index]

Sum <= A_sv [A_index]

end

if (B_sv [B_index] ≠ 0) then

Row <= B_sr[B_index]

Col <= B_sc[B_index]

Sum <= B_sv[B_index]

end

end

Representation of Row and Column Access of Input Matrices

SPARSE MATRIX ADDITION
OPERATION

0 0 0 0 1 0 3 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

3 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 1 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 6 0 0 0 0

1 0 0 0 0 4 0 0 0 0

0 0 0 0 2 0 0 0 0 0

0 2 0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0 0 0

0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 1 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Matrix A Matrix B

SIMULATION AND IMPLEMENTATION

Input Valid Schematic

Output Valid Schematic

Design Simulation: Sparse Matrix Addition

RESULT ANALYSIS

Significant decrease in

Latency for the proposed

sparse addition

compared to regular

matrix addition

Significant increase in

Throughput for the

proposed sparse addition

compared to regular

matrix addition

RESULT COMPARISON

0 150 300 450 600 750 900 1050 1200

Slice Registers

Slice LUTs

Memory

Occupied Slices

IO

143

245

0

83

77

822

1,220

16

459

37

FPGA Resource Utilization Summary

Regular Sparse

FPGA Resource Utilization: Regular vs Sparse for Matrix

Addition Operation

Input (ns) Output (ns)

Best Case Delay (min) 3.76 4.82

Worst Case Delay (max) 4.34 5.96

Power Analysis: Sparse Matrix Arithmetic Operation

Hardware Implementation: Best- and worst-case Delays

Proposed Method Regular Method

KEY TAKEAWAYS

• Today's applications require higher

computational throughput and a distributed

memory approach for real-time

applications.

• This research is primarily focused on

designing an optimized architecture for

sparse matrix operations, allowing for

more efficiency than standard operations.

• The functionality of the design is verified

by different sets of test cases under a

specific size.

• The system contains a memory control

which fetches the data from memory and

passes it on for various arithmetic

operations.

• Research improvement in this area is

needed to increase logic resources by a

comparable increase in I/O bandwidth and

on-chip memory capacity, especially when

the matrix sparsity is unstructured and

randomly distributed.

• Opportunities for future work includes

increasing the simulations for a variety of

benchmark matrices from all application

domains and exploring further optimization.

FUTURE WORK

THANK YOU

