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Topics of research interest and current projects
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http://www.treeslab.org/https://www.lissinpe.com.br/
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› Land Use Change in Amazon: Institutional Analysis and 

Modelling at multiple temporal and spatial scales;

› Scenarios for the Amazon: Climate, Biodiversity and Land use;

› Environmental Monitoring of the Amazon Biome by Satellite.

› Assessment of forest deforestation impacts;

› Quantification of forest biomass and carbon stock;

› Remote sensing mapping of burnt forests.

http://www.treeslab.org/
https://www.lissinpe.com.br/
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Small-scale agriculture

Food for local population Income for families Invisible
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Images from:

Papaya

Cassava Cassava

Black pepper



This paper aims to test different methods for image classification focusing on small-scale agriculture 
in the region of Mocajuba and Cametá, municipalities in the Northeast of Pará state, Brazil 
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In Brazilian Amazon, several studies 
on agriculture have been carried 
out. Yet, most of them addresses 
large-scale agriculture
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Remote sensing techniques

Few studies can be found. On the 
other hand, there are plenty of 
techniques that can be tested for 
mapping this land use class

Small-scale agriculture

Testing and evaluating techniques capable 
of detecting this type of agriculture, which 
is largely invisible, despite its importance 
to society, environment and economy

Contribution

1 2 3

What can we find about small-scale agriculture 
mapping by using remote sensing techniques?
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We could observe the combination of different techniques: in some studies, authors adapted and

tested techniques used to large-scale agriculture, but considering the unique features of small-scale

agriculture in Amazon.

Maximum likelihood 

+ neural networks

Multiresolution segmentation 

+ adapted nearest neighbor

Segmentation + 

random forest

Object-based analysis are broadly used in many studies: segmentation allows the use of more

features, such as shape, texture and so on, rather than only spectral ones. Small-scale agriculture has

specific shape and texture, and spectral mixture, so an object-based analysis unfolds as a key technique.

Inoue et al. (2007), Blaschke (2010), Dutrieux et al. (2015), Vogels et al. (2019), Souza et al. (2019), Nguyen et al. (2020)
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Hotspot: smallholders and

secondary vegetation

Main crops: cassava and açaí

Shifting cultivation: system 

with swidden-fallow cycles

Brazilian Amazon: Mocajuba

and Cametá municipalities, 

Baixo Tocantins region, 

Northeast of Pará State
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PlanetScope Surface

Reflectance Mosaics

Date: September, 2020

Spatial resolution: 4.77 m

Bands: R, G, B, NIR
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C5.0 Decision trees Adapted nearest neighbor
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Water

Rivers, lagoons, etc.

Forest

Natural vegetation with 

predominance of trees

Secondary vegetation

Natural vegetation in regeneration 

emerged from previously deforested 

areas, with trees, shrubs and herbs 

Urban areas

Built-up areas with population clusters: 

city, village and community

Pasture

Predominance of herbaceous and grassy 

vegetation, it may occur also sparse shrub 

vegetation and few arboreal individuals

Small-scale agriculture

Small agriculture lands 

with mainly annual crops

Others

Aggregate of land use and land cover, 

such as rocky outcrops, sand banks

Non observed

Clouds and cloud shadows



16

Introduction

State of the art

Material and methods

Results and discussion

Conclusion

1

2

3

4

5



17Brazilian National Institute For Space Research



18Brazilian National Institute For Space Research



19

High spatial resolution sensors are more adequate to improve classification accuracy due to the small-scale agriculture’s size: our

results presented mean area of 0.97 ha ± 0.69 ha for Adapted Nearest-neighbor and 0.70 ha ± 0.39 ha for C5.0 Decision trees.

C5.0 Decision trees algorithm found better results when mapping small-scale agriculture (75%), compared to Adapted

Nearest-neighbor (65%). This performance of Adapted Nearest-neighbor algorithm is corroborated with other studies that

found around 62% of producer’s accuracy for small-scale agriculture carried out in the same region of Brazilian Amazon.

Both algorithms had the same omission errors for small-scale agriculture regarding secondary vegetation (15%) and pasture

(10%). Adapted Nearest-neighbor also had omission errors for small-scale agriculture with the class others (10%).

Overall, the results for small-scale agriculture were adequate and despite the different accuracies, both methods showed

limitations when differentiating this class from pasture and secondary vegetation.

Adapted Nearest-neighbor may be overclassifying small-scale agriculture: this method had a commission error of 19%,

which means that a significant number of polygons were classified by mistake as small-scale agriculture, increasing the area of

this class. These classification errors occurred due to confusion, especially with secondary vegetation, forest, and others.

C5.0 Decision trees did not have commission error for small-scale agriculture class. In other words, this method is more

conservative for mapping small-scale agriculture and did not included other classes in small-scale agriculture by mistake as

Adapted Nearest-neighbor did.

Brazilian National Institute For Space Research
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C5.0 

Decision

trees

Adapted

nearest-

neighbor

Higher producer’s accuracy
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More suitable

Small-scale agriculture:

Challenges: use of same training and test samples to promote an adequate comparison
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Future work

We recommend investigating which features are more significant for the identification of small-scale
agriculture by C5.0. We suggest a systematically removal of features at the classification level and
performing a sensitive analysis.

The inclusion of the temporal component coupled with machine learning and deep learning techniques
may contribute for selecting other important variables for small-scale agriculture classification.

We recommend testing different sampling design to test better results and perform a sensitive analysis.
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