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Summary

I Membrane Systems: ideas and definitions
I Membrane Systems with Active Membranes
I Computing Power of Membrane Systems
I Attacking Computationally Hard Problems
I Space Complexity in Membrane Systems with Active

Membranes
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Membrane Systems: a Bio-inspired computing model

I G. Paun, 1998 (P Systems): computational model inspired
from the structure and functioning of the cell

I Discrete
I Non-deterministic
I Maximally parallel application of the rules

I Main components:
I Cellular structure
I Chemical substances
I Cellular reactions
I Communication of substances
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Cell Structure
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Membrane structure

I Each membrane defines a REGION (compartment) in the
membrane structure

I The most external membrane separates the system and the
environment. It is called SKIN

I Some substances are communicated through the membranes
I A membrane is identified by means of a label
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Membrane Structure
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Membrane Systems: Chemicals and Reactions

I Chemicals - Ions, molecules, proteins: multisets of symbols
over an alphabet

I Multiset: each symbol can be present in one or more copies in
a region

I E.g. a5, b3, c : five copies of chemical a, three of b, and one of
c are present in a region

I A reaction is described by a CF rewriting rule and target
indication

I Chemical on left replaced by chemicals on right
I Obtained chemicals communicated according to target

indication
I Special Symbol δ: membrane is dissolved
I E.g. a→ (x , here)(y , out)(z , in3)δ
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Membrane System
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Membrane System
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Definition: Membrane System

Π = (V , µ,M1, . . . ,Mn, (R1, ρ1), . . . , (Rn, ρn), i0)

I V : Alphabet
I µ: Membrane structure (Ex. [ [ ]2 [ ]3 [ [ ]5 [ ]6 ]4 ]1)
I Mi : Multisets of symbols (or strings) in V

I Ri : Finite sets of evolution rules x → y ,
x ∈ V ∗, y = y

′
or y = y

′
δ where y

′

is a string over (V × tar), tar ∈ {here, out, inj}
I ρi : Partial order relations over Ri

I i0: Output Membrane. If empty, then the output region is the
environment
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Evolution

I M1, . . . ,Mn: initial configuration
I Rules are applied following the given priorities
I Rules are applied in a non-deterministic way
I All objects evolve in parallel
I All regions evolve in parallel
I Rules can move objects through membranes

- here: the object is not moved
- out: the object is sent to the adjacent external region
- inj : the object is sent to the inner membrane with label j
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Computation

I Computation: Sequence of transitions between two
configurations (by means of rules). A computation halts when
no further rule can be applied

I Output:
- Objects in i0 (or outside the skin) when the computation halts
- ∅ if the computation never stops
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Active Membranes: active role in the computation

I Polarizations: electrical charges (positive +, negative -, or
neutral 0) are associated with the membranes.

I Rules are applied according to polarizations
I Membranes can be dissolved
I New membranes can be created by division of existing ones.

Objects in the divided membrane are duplicated:
I Division for elementary membranes

[h A ]αh → [h B ]βh [h C ]γh
I Division for non-elementary membranes

[h0 [h1 ]+h1
. . . [hk ]+hk [hk+1 ]−hk+1

. . . [hn ]−hn ]αh0
→

[h0 [h1 ]+h1
. . . [hk ]+hk ]βh0

[h0 [hk+1 ]−hk+1
. . . [hn ]−hn ]γh0
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Definition: Membrane Systems with Active Membranes

Π = (V ,H, µ,M1, . . . ,Mn,R)

I V : Alphabet
I H: set of labels for membranes
I µ: Membrane structure (Ex. [ [ ]2 [ ]3 [ [ ]5 [ ]6 ]4 ]1)
I Mi : String over V, initial multiset of symbols in region i

I R : Finite sets of evolution rules
I Membranes are marked using polarization: {+,−, 0}
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Developmental Rules

Assume a ∈ V ,w ∈ V ∗, h ∈ H, αi ∈ {+,−, 0}
I Object evolution: [a→ w ]α1

h

I IN communication: a [ ]α1
h → [b]α2

h

I OUT communication: [a]α1
h → [ ]α2

h b

I Dissolution: [a]α1
h → b
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Division Rules

I Elementary division:
[a]α1

h → [b]α2
h [c]α3

h

I Non-elementary division:[
[ ]+h1
· · · [ ]+hk [ ]−hk+1

· · · [ ]−hn
]α1
h
→[

[ ]+h1
· · · [ ]+hk

]α2
h[

[ ]−hk+1
· · · [ ]−hn

]α3
h

I Non-elementary division: Membranes with neutral polarization
are duplicated

17/45



Application of the rules

I Maximal parallel semantics
I At each step, each object and membrane can be the subject of

only one rule
I If two conflicting rules can be applied: non–deterministic choice
I When a membrane divides, its content is replicated unchanged

in the new copy
I OUTPUT: Symbols that exit from the skin in a halting

computation
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Computing Power of Membrane Systems

I Systems using a single membrane can only generate length
sets of context–free languages

I Computing power cannot be extended by using an unlimited
number of membranes

I Allowing the dissolution of membranes increases computing
power, when at least two membranes are used; universality is
not reached.

I To obtain universal systems, further features must be
considered: cooperative (non context-free) rules, priorities
defining the order of rules application, or structured objects

I Membranes are necessary to reach universality (one membrane
does not suffice)
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Exploiting Elementary Membrane Division: SAT problem

I SAT - Satisfiability for boolean formulas: a boolean formula Φ
in CNF, with

I n boolean variables x1, x2, . . . xn
I m clauses

I Question: is there a truth assignment for x1, x2, . . . xn such
that Φ is true?

I Brute force algorithm requires exponential time
I SAT is NP–complete
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Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01
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Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01
I [[z2 T1 a2 . . . an]02 [z2 F1 a2 . . . an]02]01
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Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01
I [[z2 T1 a2 . . . an]02 [z2 F1 a2 . . . an]02]01
I [[z3 T1T2 a3 . . . an]02 [z3 T1F2 a3 . . . an]02

[z3 F1T2 a3 . . . an]02 [z3 F1F2 a3 . . . an]02]01
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Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01
I [[z2 T1 a2 . . . an]02 [z2 F1 a2 . . . an]02]01
I [[z3 T1T2 a3 . . . an]02 [z3 T1F2 a3 . . . an]02

[z3 F1T2 a3 . . . an]02 [z3 F1F2 a3 . . . an]02]01
I . . .

I [[zn T1T2 . . .Tn]02 [zn T1T2 . . .Tn−1Fn]02
. . . [zn F1F2 . . .Fn]02]01

I In n steps we generate all possible truth assignments
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Solving SAT in linear time

I In one step we change the polarization of the membranes using
zn

I [[T1T2 . . .Tn]+2 [T1T2 . . .Tn−1Fn]+2
. . . [F1F2 . . .Fn]+2 ]01

25/45



Solving SAT in linear time

I In one step we change the polarization of the membranes using
zn

I [[T1T2 . . .Tn]+2 [T1T2 . . .Tn−1Fn]+2
. . . [F1F2 . . .Fn]+2 ]01

I In one step every symbol Ti (resp. Fi ) is replaced by some
symbols Rhi

I 1 ≤ hi ≤ m is the index of a clause satisfied by setting
xi =TRUE (resp. xi =FALSE)

I We obtain, for example,
[[R1R3R1R4 . . .R6]+2 [R7R3R2R3 . . .R2]+2
. . . [R2R5R1R5 . . .R1]+2 ]01
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Solving SAT in linear time

I In 2m steps we check whether or not a membrane contains all
Rj , where 1 ≤ j ≤ m

I [[...]−2 [...]+2 . . . [...]−2 T T ]01
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Solving SAT in linear time

I In 2m steps we check whether or not a membrane contains all
Rj , where 1 ≤ j ≤ m

I [[...]−2 [...]+2 . . . [...]−2 T T ]01
I After n + 2m + 2 steps, eventually a symbol T appears in the

skin membrane
I [[...]−2 [...]+2 . . . [...]−2 T ]−1 YES

I If after exactly n + 2m + 3 computation steps we obtain a T,
then a symbol YES is sent out through the skin; otherwise a
symbol NO is sent out.
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Features of the Solution

I Requires linear time
I Requires exponential space
I The solution proposed is said to be Semiuniform:

I Every input instance requires a specific membrane system to
be computed

I Given an input instance x of length n, the membrane system
used to solve it can be generated by a deterministic Turing
machine in polynomial time w.r.t. n

I The solution is said to be CONFLUENT
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Determinism vs Non–determinism

I A Membrane System Π is said to be deterministic if there is
at most one possible transition from a configuration to the
following one, for all possible configurations

I A non–deterministic Membrane system Π is said to be
confluent if the computations of Π are either all accepting or
all rejecting. Such a system accepts in the former case and
rejects in the latter

I When not all computations necessarily agree on the result, the
system is called non-confluent. Non-confluent systems are
said to accept when there exists an accepting computation,
and to reject otherwise
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Complexity classes for confluent Membrane systems

(N)PMCT : languages decided IN POLYNOMIAL TIME by
(non–)confluent Membrane systems in the class T

I T = AM : systems with both division for elementary and
non–elementary membranes

I T = EAM : systems with division for elementary membranes
only

I T = NAM : systems without membrane division
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Basic properties

I PMCT ⊆ NPMCT

I PMCNAM ⊆ PMCEAM ⊆ PMCAM
I NPMCNAM ⊆ NPMCEAM ⊆ NPMCAM
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CONFLUENT P systems without division rules

I P ⊆ PMCNAM

I "Trick": the DTM deciding L ∈ P is used to solve DIRECTLY
the problem in polynomial time

I Then, we build a P system with a single membrane containing
either an object YES , whenever an input x ∈ L is given, or
NO, otherwise. This requires polynomial time.

I The P system send out the object in a single step
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CONFLUENT P systems without division rules

The opposite is also true:

I PMCNAM ⊆ P

I Idea: simulation of a generic P system Π without membrane
division using a DTM M, with a polynomial slowdown

I We keep track of the NUMBER OF OCCURRENCES of each
symbol in each membrane

I The application of a rule in Π can be simulated by modifying
the counters used in M
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CONFLUENT systems with elementary division rules only

I We have already seen that SAT is solvable by a family of
Membrane systems that make use only of elementary
membrane division. It follows: NP ⊆ PMCEAM

I SQRT-3SAT (PP–complete problem) can also be solved by
such systems. Hence: PP ⊆ PMCEAM

I Confluent P systems with elementary membrane division can
be simulated by Deterministic Turing machines using
polinomial space: PMCEAM ⊆ PSPACE
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CONFLUENT systems with both types of division rules

I PMCAM ⊆ PSPACE : can be simulated by DTM in
polynomial space

I Quantified SAT (QSAT) - SAT using quantifiers: consider a
Boolean expression Φ in CNF. Question:
∃x1∀x2∃x3∀x4 . . .QnxnΦ?

I QSAT is PSPACE–complete
I QSAT ∈ PMCAM

I PSPACE ⊆ PMCAM

I PSPACE = PMCAM
I What if we remove dissolving action and polarizations?

P = PMCAM(nδ, nPol)!!!
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Introducing space complexity classes

I Idea: both objects and membrane need physical space
I Let Ci be a configuration of a P system Π

I size size(Ci ) is the sum of number of membranes in µ and the
total number of objects they contain

I The space required by a halting computation
C = (C0,C1, . . . ,Cm) of Π is
size(C ) = max{size(C0), . . . , size(Cm)}

I The space required by Π itself is
size(Π) =
= max{size(C ) : C is a halting computation of Π}
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Some basic result concerning space complexity classes

From results concerning time complexity, it follows immediately:

I P ⊆ MCSPACENAM(O(1))

I NP ∪ co − NP ⊆ EXPMCSPACEEAM
I PSPACE ⊆ EXPMCSPACEAM
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Space Complexity Results

I PSPACE–complete problem Quantified–3SAT can be solved
by Membrane–systems with active membranes using a
polynomial amount of space

I Membrane–systems with active membranes using a polynomial
amount of space can be simulated by Turing machines using
polynomial space

I Hence, PSPACE = PMCSPACEAM
I Similarly, EXPSPACE = EXPMCSPACEAM
I What about sublinear space?
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Sublinear Space Membrane Systems

I Two distinct alphabets: INPUT alphabet and WORK alphabet
I Input objects cannot be rewritten and do not contribute to the

size of a configuration
I Size of a configuration: number of membranes + total number

of working objects
I Weaker uniformity condition: DLOGTIME -uniformity

(DLOGTIME Turing machines)
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Power of Sublinear Space Membrane Systems

I Idea: compare with logarithmic space Turing machines (or
other equivalent models)

I Two problems if we use "standard" techniques:
I Need for a polynomial number of working objects (violates

log–space condition)
I Need for a polynomial number of rewriting rules (violates

uniformity condition)

I Solution: use polarization both to communicate objects and
store information
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Power of Sublinear Space Membrane Systems

Each Log–space DTM M can be simulated by a
DLOGTIME -uniform family Π of Membrane systems with active
membranes in logarithmic space having:

I A state object qi ,w : M is in state q, input–head on i-th
symbol, work–head on w -th symbol

I O(log(n)) nested membranes (INPUT tape membranes)
containing, in the innermost one, the input symbols of M

I O(log(n)) membranes to store the work tape of M (WORK
tape membranes).

I Two sets of membranes, which size depends on the dimensions
of the input and the working alphabets of M (SYMBOL
membranes).
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Power of Sublinear Space Membrane Systems

To simulate a computation step of M

I The state object enters the INPUT membranes: the bits
corresponding to the actual position of the INPUT head of M
are stored in the polarizations of the INPUT membranes

I Only the object corresponding to the INPUT symbol actually
read can reach the skin

I The state object identifies the symbol actually under the
WORK head

I The transition of M can be simulated using the SYMBOLS
membranes
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Power of Sublinear Space Membrane Systems

I Only a logarithmic number of objects and membranes are
required (besides the input objects)

I The family Π is DLOGTIME -uniform
I Thus: L (class of problems solved by log–space Turing

machines) is contained in the class of problems solved by
DLOGTIME -uniform, log–space Membrane systems with
active membranes.
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Main resources

I BOOKS:
I G. Paun, Membrane Computing - An introduction,

Springer-Verlag, Berlin, 2002
I G. Ciobanu, M.J. Perez-Jimenez, G. Paun (Eds), Applications

of Membrane Computing, Springer-Verlag, Berlin 2006
I P. Frisco, Computing with Cells. Advances in Membrane

Computing, Oxford University Press, 2009
I G. Paun, G. Rozenberg, A. Salomaa (eds.), The Oxford

Handbook of Membrane Computing, Oxford University Press,
2010

I INTERNET: P systems web page: http://ppage.psystems.eu
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