
Computing Efficiency in Membrane Systems

Claudio Zandron
claudio.zandron@unimib.it

DISCo - Universita’ di Milano-Bicocca, Italy

Future Computing Conference 2021

Claudio Zandron

Claudio Zandron got the PhD in Computer Science from the
University of Milan in 2002.

Since 2006 he is Associate Professor at the Department of
Informatics, Systems and Communication of the University of

Milano-Bicocca, Italy.
His research interests concern the areas of formal languages,
molecular computing models, DNA computing, Membrane

Computing and Computational Complexity.

2/45

Summary

I Membrane Systems: ideas and definitions
I Membrane Systems with Active Membranes
I Computing Power of Membrane Systems
I Attacking Computationally Hard Problems
I Space Complexity in Membrane Systems with Active

Membranes

3/45

Membrane Systems: a Bio-inspired computing model

I G. Paun, 1998 (P Systems): computational model inspired
from the structure and functioning of the cell

I Discrete
I Non-deterministic
I Maximally parallel application of the rules

I Main components:
I Cellular structure
I Chemical substances
I Cellular reactions
I Communication of substances

4/45

Cell Structure

5/45

Membrane structure

I Each membrane defines a REGION (compartment) in the
membrane structure

I The most external membrane separates the system and the
environment. It is called SKIN

I Some substances are communicated through the membranes
I A membrane is identified by means of a label

6/45

Membrane Structure

7/45

Membrane Systems: Chemicals and Reactions

I Chemicals - Ions, molecules, proteins: multisets of symbols
over an alphabet

I Multiset: each symbol can be present in one or more copies in
a region

I E.g. a5, b3, c : five copies of chemical a, three of b, and one of
c are present in a region

I A reaction is described by a CF rewriting rule and target
indication

I Chemical on left replaced by chemicals on right
I Obtained chemicals communicated according to target

indication
I Special Symbol δ: membrane is dissolved
I E.g. a→ (x , here)(y , out)(z , in3)δ

8/45

Membrane System

9/45

Membrane System

10/45

Definition: Membrane System

Π = (V , µ,M1, . . . ,Mn, (R1, ρ1), . . . , (Rn, ρn), i0)

I V : Alphabet
I µ: Membrane structure (Ex. [[]2 []3 [[]5 []6]4]1)
I Mi : Multisets of symbols (or strings) in V

I Ri : Finite sets of evolution rules x → y ,
x ∈ V ∗, y = y

′
or y = y

′
δ where y

′

is a string over (V × tar), tar ∈ {here, out, inj}
I ρi : Partial order relations over Ri

I i0: Output Membrane. If empty, then the output region is the
environment

11/45

Evolution

I M1, . . . ,Mn: initial configuration
I Rules are applied following the given priorities
I Rules are applied in a non-deterministic way
I All objects evolve in parallel
I All regions evolve in parallel
I Rules can move objects through membranes

- here: the object is not moved
- out: the object is sent to the adjacent external region
- inj : the object is sent to the inner membrane with label j

12/45

Computation

I Computation: Sequence of transitions between two
configurations (by means of rules). A computation halts when
no further rule can be applied

I Output:
- Objects in i0 (or outside the skin) when the computation halts
- ∅ if the computation never stops

13/45

Active Membranes: active role in the computation

I Polarizations: electrical charges (positive +, negative -, or
neutral 0) are associated with the membranes.

I Rules are applied according to polarizations
I Membranes can be dissolved
I New membranes can be created by division of existing ones.

Objects in the divided membrane are duplicated:
I Division for elementary membranes

[h A]αh → [h B]βh [h C]γh
I Division for non-elementary membranes

[h0 [h1]+h1
. . . [hk]+hk [hk+1]−hk+1

. . . [hn]−hn]αh0
→

[h0 [h1]+h1
. . . [hk]+hk]βh0

[h0 [hk+1]−hk+1
. . . [hn]−hn]γh0

14/45

Definition: Membrane Systems with Active Membranes

Π = (V ,H, µ,M1, . . . ,Mn,R)

I V : Alphabet
I H: set of labels for membranes
I µ: Membrane structure (Ex. [[]2 []3 [[]5 []6]4]1)
I Mi : String over V, initial multiset of symbols in region i

I R : Finite sets of evolution rules
I Membranes are marked using polarization: {+,−, 0}

15/45

Developmental Rules

Assume a ∈ V ,w ∈ V ∗, h ∈ H, αi ∈ {+,−, 0}
I Object evolution: [a→ w]α1

h

I IN communication: a []α1
h → [b]α2

h

I OUT communication: [a]α1
h → []α2

h b

I Dissolution: [a]α1
h → b

16/45

Division Rules

I Elementary division:
[a]α1

h → [b]α2
h [c]α3

h

I Non-elementary division:[
[]+h1
· · · []+hk []−hk+1

· · · []−hn
]α1
h
→[

[]+h1
· · · []+hk

]α2
h[

[]−hk+1
· · · []−hn

]α3
h

I Non-elementary division: Membranes with neutral polarization
are duplicated

17/45

Application of the rules

I Maximal parallel semantics
I At each step, each object and membrane can be the subject of

only one rule
I If two conflicting rules can be applied: non–deterministic choice
I When a membrane divides, its content is replicated unchanged

in the new copy
I OUTPUT: Symbols that exit from the skin in a halting

computation

18/45

Computing Power of Membrane Systems

I Systems using a single membrane can only generate length
sets of context–free languages

I Computing power cannot be extended by using an unlimited
number of membranes

I Allowing the dissolution of membranes increases computing
power, when at least two membranes are used; universality is
not reached.

I To obtain universal systems, further features must be
considered: cooperative (non context-free) rules, priorities
defining the order of rules application, or structured objects

I Membranes are necessary to reach universality (one membrane
does not suffice)

19/45

Exploiting Elementary Membrane Division: SAT problem

I SAT - Satisfiability for boolean formulas: a boolean formula Φ
in CNF, with

I n boolean variables x1, x2, . . . xn
I m clauses

I Question: is there a truth assignment for x1, x2, . . . xn such
that Φ is true?

I Brute force algorithm requires exponential time
I SAT is NP–complete

20/45

Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01

21/45

Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01
I [[z2 T1 a2 . . . an]02 [z2 F1 a2 . . . an]02]01

22/45

Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01
I [[z2 T1 a2 . . . an]02 [z2 F1 a2 . . . an]02]01
I [[z3 T1T2 a3 . . . an]02 [z3 T1F2 a3 . . . an]02

[z3 F1T2 a3 . . . an]02 [z3 F1F2 a3 . . . an]02]01

23/45

Solving SAT in linear time

I [[z1 a1a2 . . . an]02]01
I [[z2 T1 a2 . . . an]02 [z2 F1 a2 . . . an]02]01
I [[z3 T1T2 a3 . . . an]02 [z3 T1F2 a3 . . . an]02

[z3 F1T2 a3 . . . an]02 [z3 F1F2 a3 . . . an]02]01
I . . .

I [[zn T1T2 . . .Tn]02 [zn T1T2 . . .Tn−1Fn]02
. . . [zn F1F2 . . .Fn]02]01

I In n steps we generate all possible truth assignments

24/45

Solving SAT in linear time

I In one step we change the polarization of the membranes using
zn

I [[T1T2 . . .Tn]+2 [T1T2 . . .Tn−1Fn]+2
. . . [F1F2 . . .Fn]+2]01

25/45

Solving SAT in linear time

I In one step we change the polarization of the membranes using
zn

I [[T1T2 . . .Tn]+2 [T1T2 . . .Tn−1Fn]+2
. . . [F1F2 . . .Fn]+2]01

I In one step every symbol Ti (resp. Fi) is replaced by some
symbols Rhi

I 1 ≤ hi ≤ m is the index of a clause satisfied by setting
xi =TRUE (resp. xi =FALSE)

I We obtain, for example,
[[R1R3R1R4 . . .R6]+2 [R7R3R2R3 . . .R2]+2
. . . [R2R5R1R5 . . .R1]+2]01

26/45

Solving SAT in linear time

I In 2m steps we check whether or not a membrane contains all
Rj , where 1 ≤ j ≤ m

I [[...]−2 [...]+2 . . . [...]−2 T T]01

27/45

Solving SAT in linear time

I In 2m steps we check whether or not a membrane contains all
Rj , where 1 ≤ j ≤ m

I [[...]−2 [...]+2 . . . [...]−2 T T]01
I After n + 2m + 2 steps, eventually a symbol T appears in the

skin membrane
I [[...]−2 [...]+2 . . . [...]−2 T]−1 YES

I If after exactly n + 2m + 3 computation steps we obtain a T,
then a symbol YES is sent out through the skin; otherwise a
symbol NO is sent out.

28/45

Features of the Solution

I Requires linear time
I Requires exponential space
I The solution proposed is said to be Semiuniform:

I Every input instance requires a specific membrane system to
be computed

I Given an input instance x of length n, the membrane system
used to solve it can be generated by a deterministic Turing
machine in polynomial time w.r.t. n

I The solution is said to be CONFLUENT

29/45

Determinism vs Non–determinism

I A Membrane System Π is said to be deterministic if there is
at most one possible transition from a configuration to the
following one, for all possible configurations

I A non–deterministic Membrane system Π is said to be
confluent if the computations of Π are either all accepting or
all rejecting. Such a system accepts in the former case and
rejects in the latter

I When not all computations necessarily agree on the result, the
system is called non-confluent. Non-confluent systems are
said to accept when there exists an accepting computation,
and to reject otherwise

30/45

Complexity classes for confluent Membrane systems

(N)PMCT : languages decided IN POLYNOMIAL TIME by
(non–)confluent Membrane systems in the class T

I T = AM : systems with both division for elementary and
non–elementary membranes

I T = EAM : systems with division for elementary membranes
only

I T = NAM : systems without membrane division

31/45

Basic properties

I PMCT ⊆ NPMCT

I PMCNAM ⊆ PMCEAM ⊆ PMCAM
I NPMCNAM ⊆ NPMCEAM ⊆ NPMCAM

32/45

CONFLUENT P systems without division rules

I P ⊆ PMCNAM

I "Trick": the DTM deciding L ∈ P is used to solve DIRECTLY
the problem in polynomial time

I Then, we build a P system with a single membrane containing
either an object YES , whenever an input x ∈ L is given, or
NO, otherwise. This requires polynomial time.

I The P system send out the object in a single step

33/45

CONFLUENT P systems without division rules

The opposite is also true:

I PMCNAM ⊆ P

I Idea: simulation of a generic P system Π without membrane
division using a DTM M, with a polynomial slowdown

I We keep track of the NUMBER OF OCCURRENCES of each
symbol in each membrane

I The application of a rule in Π can be simulated by modifying
the counters used in M

34/45

CONFLUENT systems with elementary division rules only

I We have already seen that SAT is solvable by a family of
Membrane systems that make use only of elementary
membrane division. It follows: NP ⊆ PMCEAM

I SQRT-3SAT (PP–complete problem) can also be solved by
such systems. Hence: PP ⊆ PMCEAM

I Confluent P systems with elementary membrane division can
be simulated by Deterministic Turing machines using
polinomial space: PMCEAM ⊆ PSPACE

35/45

CONFLUENT systems with both types of division rules

I PMCAM ⊆ PSPACE : can be simulated by DTM in
polynomial space

I Quantified SAT (QSAT) - SAT using quantifiers: consider a
Boolean expression Φ in CNF. Question:
∃x1∀x2∃x3∀x4 . . .QnxnΦ?

I QSAT is PSPACE–complete
I QSAT ∈ PMCAM

I PSPACE ⊆ PMCAM

I PSPACE = PMCAM
I What if we remove dissolving action and polarizations?

P = PMCAM(nδ, nPol)!!!

36/45

Introducing space complexity classes

I Idea: both objects and membrane need physical space
I Let Ci be a configuration of a P system Π

I size size(Ci) is the sum of number of membranes in µ and the
total number of objects they contain

I The space required by a halting computation
C = (C0,C1, . . . ,Cm) of Π is
size(C) = max{size(C0), . . . , size(Cm)}

I The space required by Π itself is
size(Π) =
= max{size(C) : C is a halting computation of Π}

37/45

Some basic result concerning space complexity classes

From results concerning time complexity, it follows immediately:

I P ⊆ MCSPACENAM(O(1))

I NP ∪ co − NP ⊆ EXPMCSPACEEAM
I PSPACE ⊆ EXPMCSPACEAM

38/45

Space Complexity Results

I PSPACE–complete problem Quantified–3SAT can be solved
by Membrane–systems with active membranes using a
polynomial amount of space

I Membrane–systems with active membranes using a polynomial
amount of space can be simulated by Turing machines using
polynomial space

I Hence, PSPACE = PMCSPACEAM
I Similarly, EXPSPACE = EXPMCSPACEAM
I What about sublinear space?

39/45

Sublinear Space Membrane Systems

I Two distinct alphabets: INPUT alphabet and WORK alphabet
I Input objects cannot be rewritten and do not contribute to the

size of a configuration
I Size of a configuration: number of membranes + total number

of working objects
I Weaker uniformity condition: DLOGTIME -uniformity

(DLOGTIME Turing machines)

40/45

Power of Sublinear Space Membrane Systems

I Idea: compare with logarithmic space Turing machines (or
other equivalent models)

I Two problems if we use "standard" techniques:
I Need for a polynomial number of working objects (violates

log–space condition)
I Need for a polynomial number of rewriting rules (violates

uniformity condition)

I Solution: use polarization both to communicate objects and
store information

41/45

Power of Sublinear Space Membrane Systems

Each Log–space DTM M can be simulated by a
DLOGTIME -uniform family Π of Membrane systems with active
membranes in logarithmic space having:

I A state object qi ,w : M is in state q, input–head on i-th
symbol, work–head on w -th symbol

I O(log(n)) nested membranes (INPUT tape membranes)
containing, in the innermost one, the input symbols of M

I O(log(n)) membranes to store the work tape of M (WORK
tape membranes).

I Two sets of membranes, which size depends on the dimensions
of the input and the working alphabets of M (SYMBOL
membranes).

42/45

Power of Sublinear Space Membrane Systems

To simulate a computation step of M

I The state object enters the INPUT membranes: the bits
corresponding to the actual position of the INPUT head of M
are stored in the polarizations of the INPUT membranes

I Only the object corresponding to the INPUT symbol actually
read can reach the skin

I The state object identifies the symbol actually under the
WORK head

I The transition of M can be simulated using the SYMBOLS
membranes

43/45

Power of Sublinear Space Membrane Systems

I Only a logarithmic number of objects and membranes are
required (besides the input objects)

I The family Π is DLOGTIME -uniform
I Thus: L (class of problems solved by log–space Turing

machines) is contained in the class of problems solved by
DLOGTIME -uniform, log–space Membrane systems with
active membranes.

44/45

Main resources

I BOOKS:
I G. Paun, Membrane Computing - An introduction,

Springer-Verlag, Berlin, 2002
I G. Ciobanu, M.J. Perez-Jimenez, G. Paun (Eds), Applications

of Membrane Computing, Springer-Verlag, Berlin 2006
I P. Frisco, Computing with Cells. Advances in Membrane

Computing, Oxford University Press, 2009
I G. Paun, G. Rozenberg, A. Salomaa (eds.), The Oxford

Handbook of Membrane Computing, Oxford University Press,
2010

I INTERNET: P systems web page: http://ppage.psystems.eu

45/45

