An Interaction Profile-based Classification for Twitter Users

Jonathan Debure ^{1,2}

Cédric Du Mouza 2 Camellia Constantin 3 Stéphan Brunessaux 1

¹AIRBUS, Paris, France

²CNAM, Paris, France

³Sorbonne University, Paris, France

May 30, 2021

Jonathan Debure

- PhD Student in Conservatoire National des Arts et Métiers de Paris (2018-2021)
- Data Scientist in Airbus Defence & Space
- Research interest
 - Social network analysis
 - Machine Learning

Related work

- The data model
 - The data model
 - Global interaction clustering

Dataset

Experimentation 5

- Global interactions clustering
- Interaction profiles-based clustering
- Results 6
 - Conclusion

- Social network for communication, entertainment and marketing
- Share texts, images, audios, videos
- Importance of influencers for advertisers, medias and security

- Influence scoring : PageRank, Klout score...
- Community detection
- Presidential election prediction, fake news, sentiment analysis

• Bot detection

Notations: Graph

We consider the Twitter platform and its underlying directed graph of interactions $\mathcal{G} = (\mathcal{U}, \mathcal{E})$ where \mathcal{U} denotes the set of nodes, *i.e.* users, $\mathcal{E} \subseteq \mathcal{U} \times \mathcal{U}$ is the set of edges, such that $(u_1, u_2) \in \mathcal{E}$ means that user u_2 performed an action on the tweets of user u_1 .

Notations: Graph

We consider the Twitter platform and its underlying directed graph of interactions $\mathcal{G} = (\mathcal{U}, \mathcal{E})$ where \mathcal{U} denotes the set of nodes, *i.e.* users, $\mathcal{E} \subseteq \mathcal{U} \times \mathcal{U}$ is the set of edges, such that $(u_1, u_2) \in \mathcal{E}$ means that user u_2 performed an action on the tweets of user u_1 .

Notations: Interaction

We denote \mathcal{A} the set of possible interactions that a user can execute on another user tweet. In the following, we consider that $\mathcal{A} = \{a_{rt}, a_{qt}, a_{rp}, a_{mt}\}$, which corresponds respectively to the actions of Retweet, Quote, Reply and Mention. The restriction of the interaction graph \mathcal{G} to a given action $a \in \mathcal{A}$ denoted \mathcal{G}_a is the graph $\mathcal{G}_a = (\mathcal{U}_a, \mathcal{E}_a)$ with $\mathcal{U}_a \subseteq \mathcal{U}$ and $\mathcal{E}_a \subseteq \mathcal{E}$ such as $(u_1, u_2) \in \mathcal{E}_a$ if u_2 performed an interaction of type a on a tweet of u_1 .

Account Ranking

Weighted PageRank

$$WPR(u_i) = (1 - \alpha) + \alpha \sum_{p_j \in In(u_i)} WPR(u_j) \times \mathcal{W}_{(j,i)}^{in} \times \mathcal{W}_{j,i)}^{out}$$
(1)

Account Ranking

Weighted PageRank

$$WPR(u_i) = (1 - \alpha) + \alpha \sum_{p_j \in In(u_i)} WPR(u_j) \times \mathcal{W}_{(j,i)}^{in} \times \mathcal{W}_{j,i)}^{out}$$
(1)

Weight

$$\mathcal{W}_{(i,j)}^{in} = \frac{\sum_{a \in \mathcal{A}} count((u_j, u_i), a)}{\sum_{v \in In(u_i)} \sum_{a \in \mathcal{A}} count((v, u_i), a)}$$
$$\mathcal{W}_{(i,j)}^{out} = \frac{\sum_{a \in \mathcal{A}} count((u_i, u_j), a)}{\sum_{v \in Out(u_i)} \sum_{a \in \mathcal{A}} count((u_i, v), a)}$$

(2)

- We collect a dataset of 21 Million Tweets about COVID
- We built a graph of 6 Million nodes and 17 million edges
- We extract the largest connected component : 2.7 Million nodes and 6.2 Million edges

Table 1: COVID Dataset: Statistics

	Followers	Friends	# Tweets	# Quotes	# Retweets	# Mentions	# Replies
Value Count	2789316	2789316	6278280	1783237	1699905	1945609	588131
Mean	3832.08	1128.18	2.64	1.31	2.49	2.01	0.37
Median	287	435	8348	1	1	1	0
Std Dev	128751.36	4644.14	8.27	3.09	8.76	6.74	2.37
Min	0	0	1	0	0	0	0
Max	85941911	1907480	8768	929	7910	2823	1480

First experiment : using the global interaction graph

The global interactions weight

The global interaction edge weight ω is a function $\omega : \mathcal{E} \to \mathbb{R}$ that takes into account all interactions between user couples.

First experiment : with log function

First experiment : with Weighted PageRank

Occurrences-based interaction profiles

We consider that a specific interaction weight for an interaction a is estimated on the restricted graph \mathcal{G}_a as:

$$\forall (u, v, a) \in \mathcal{U}^2 \times \mathcal{A}, \omega(u, v, a) = count((u, v), a)$$
(3)

May 30, 2021 14 / 20

Occurrences-based interaction profiles

Second experiment : with log function

Occurrences-based interaction profiles

Second experiment : with Weighted PageRank

Table 2: Weighted PageRank: Clusters summary

	Weighted PageRank Value				
Cluster 1	Reply PageRank is in average 9.10% smaller , Retweets				
	PageRank is in average 26.56% smaller, Quote PageR-				
	ank is in average 29.39% smaller .				
Cluster 2	Reply PageRank is in average 70.84% greater, Men-				
	tions PageRank is in average 20.30% smaller, Quote				
	PageRank is in average 13.99% smaller .				
Cluster 3	Retweet PageRank is in average 520% greater , Quote				
	PageRank is in average 230% greater, Mention PageR-				
	ank is in average 204% greater .				
Cluster 4	Reply PageRank is in average 182% greater, Mention				
	PageRank is in average 181% greater, Retweet PageR-				
	ank is in average 84.71% greater.				
Cluster	Reply PageRank is in average 493% greater , Retweet				
Outliers	PageRank is in average 3155% greater , Quote PageR-				
	ank is in average 3857% greater .				

Table 3: Weighted PageRank: Clusters composition

	Size	Composition	Types
Cluster 1	92.63%	100% composed from common users	Common users
Cluster 2	5.44%	55% composed from common users and $45%$ popular users (more than 4000 follow-	Moderately popular users, local celebrities, doctors,
		ers)	media specialists and ac- tive community users
Cluster 3	0.59%	55% composed from entities and 45% hu- man users but mainly above 10 000 follow- ers	Entities, professional users, brands, hospi- tal, city and feed/news accounts
Cluster 4	0.66%	60% composed from popular user more than 4000 followers and 35% users with more than 10 000 followers	Influencers, writers, jour- nalist, attorneys
Cluster Outliers	0.68%	60% human users, $40%$ entities. With $45%$ users with more than 100 000 followers and $40%$ with more than 10 000 followers	Celebrities, international news, politicians and brands

- We present an approach to cluster Twitter users
- Based on Weighted PageRank and users interactions
- We perform a K-means clustering and an manual validation to confirm that approach
- Several perspectives to complete this work :
 - Use mechanical turk to create a labeled and perform supervised clustering
 - Consider the graph dynamicity to propose an adaptive cluster re-computation on a sliding windows

Thank you Contact : jonathan.debure@airbus.com