# Electric vehicle charging locations for Uber in New York City

VICTOR SALAZAR RAMOS ANDREEA MATEESCU ELISABETH FOKKER JACKY LI SANDJAI BHULAI

### Introduction

#### Paris Agreement – Dec 2015

- 196 governments agreed to work to keep the world's average temperature well below rising to 2°C
- committed to take actions to reduce their Greenhouse Gas emissions
- ▶ zero emissions by 2050

#### U.S. Energy Information Administration

- 29 percent of the country's green house gas emissions
- Transportation accounts for nearly 70 percent of U.S. oil consumption

# 2. Analyze the charging and Uber pick-up data

Which improvements of **charging station locations** are needed to prepare **Uber** to drive electric cars in **New York City**?

#### Sub-questions:

- 1. How are the pick-up locations and charging stations distributed?
- 2. What are the smallest distances between the pickup locations and the nearest charging station?







### Databases Exploration and Feature Selection

Uber pick-up data for New York

- → 4 534 327 records
- → 2014 April to September data



#### Geopandas

- → GeoDataFrame conversion
- → Geometry objects
- → Plotting on real world maps

|    | geometry                   | latitude  | longitude  |
|----|----------------------------|-----------|------------|
| 10 | POINT (-73.96936 40.76461) | 40.764608 | -73.969355 |
| 24 | POINT (-73.96378 40.81121) | 40.811206 | -73.963782 |
| 39 | POINT (-73.98920 40.73482) | 40.734817 | -73.989198 |

Electric Vehicle Charging Stations in New York

- → 1000 records
- → Up to date (Jan 29<sup>th</sup>, 2021)

|    | latitude  | longitude  | city     |
|----|-----------|------------|----------|
| 10 | 40.764608 | -73.969355 | New York |
| 24 | 40.811206 | -73.963782 | New York |
| 39 | 40.734817 | -73.989198 | New York |

### Remove outside New York City

- Converting coordinates to GPS earth system
- 4 534 327 pick-up points
- 1 000 charging locations



### Remove outside New York City

- 4 413 113 pick-up points
  -2.67% (121 214 records )
- 266 charging stations
  o -73.4% (734 records)



### Hot spots for Uber pick-ups

- Uber pick-up dataset from April to September 2014
- Make clusters using K-means clustering
- Marking the centroids of each cluster, showing a pick-up hot spot
- Elbow curve to tune and optimize the K hyperparameter



# Hot spots for charging stations

- Charing stations dataset
- K-means clustering
- Centroids of charging stations hot spots
- Elbow curve to tune and optimize the K hyperparameter





Minutely Uber Arrivals Apr – Sept 2014



Hourly Uber Arrivals Apr – Sept 2014



Daily Uber Arrivals Apr – Sept 2014



Average Amount of Uber Pick-ups per weekday



Average amount of Uber pick-ups per weekday in each borough

# 3. Investigate distances



## New York City street map

- Nodes = intersections
- Edges = street segments



## Calculate shortest distances

- 1. Allocate the coordinate to the nearest node in the graph
- 2. Minimize the travel times between pick-up and charging locations
  - Dijkstra's algorithm

Over 13 years of run time

### Calculate shortest distances

- 1. Find nearest polygon with the **ball tree algorithm**
- 2. Approximate the 10 nearest charging locations with the Manhattan distance
  - Run Dijkstra's on these 10 nearest charging locations



Distance = |a-c| + |b-d|

Run time reduction from 13 years to 3.5 days

## Shortest distances per borough



### Charging location utility

- More charging locations needed at
  - the south side of Manhattan
  - the west side of Brooklyn
  - the center of Queens



### Nearest distance charging location

- Manhattan small distances
- More charging locations needed in East and South Queens and North of Staten Island



### Nearest distance charging location

- Manhattan small distances
- Upper Manhattan
- East Harlem



### Smallest Manhattan distance

| Rank                              | 1      | 2      | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------------------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| %<br>Smallest<br>Road<br>distance | 61.64% | 19.28% | 8.50% | 6.67% | 1.98% | 0.99% | 0.48% | 0.22% | 0.16% | 0.07% |

### Conclusion

"Which improvements of charging station locations are needed to prepare Uber to drive electric cars in New York City?"

More charging station locations needed in

- North-West Brooklyn (hot spots, charging station utility)
- Lower Manhattan (hot spots, charging station utility)
- Middle Bronx (hot spots)
- **South-West Queens** (hot spots and pick-up location distance)
- North Staten Island (pick-up location distance)

Middle Manhattan is ready for electric driving

• short distances, low utility



### Future studies

- Destination data to find the optimal Uber dispatch
- Optimize exact charging locations and times
- NYC dynamic energy pricing
- 4.4 millions Uber pick up for 6 months
- NYC taxi dataset ~ 175 millions per year in 2013



