
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Simulating Additive
Manufacturing By
Rethinking Simulation
Structures

Jay Lofstead, John Mitchell

Enze Chen, Manisha Ganesh, Gavin St. John

gflofst@sandia.gov

SAND2020-3862 C



Mod/Sim Typical Structure

 Examples:
 CFD, heat transfer, molecular dynamics

 Compute on every element every timestep

 Mesh types vary, but most are 3D today

 Deploy across machine balancing compute vs. communication

2



Another class of physical models

 Activity focused in a small subset of simulation domain
 Welding

 Additive manufacturing (small parts)

 Spray

 Pressure waves in material

 Domain too large to fit into memory
 Additive manufacturing at scale

 Satellite fuel tank cap 3D printed (1.16m diameter, 10 cm thick)

 https://news.lockheedmartin.com/2018-07-11-Giant-Satellite-Fuel-Tank-
Sets-New-Record-for-3-D-Printed-Space-Parts

3



Welding example

 1 site per micron

 Move heat affected zone across powder or piece edges to
melt and form new piece

4



Spray accumulation model

 Spray a material (e.g., paint) and model the accumulation

5



Additive Manufacturing (single layer)

AM demo simulation

 Similar to welding, but sweeping and ultimately multi-layer

 Move heat affected zone across powder or piece edges to
melt and form new piece



What these share

 In all cases, the area that changes after a computation round
is highly localized

 Total area can be large leading to 1% or less use of allocated
compute resources

 IO costs would dominate and storage space used would be
overwhelming with vast unchanging data between timesteps

7



New Approach

 Idea: Only compute on part of domain that will be affected
“soon”
 Split simulation run into a series of computational volumes and write

data progressively

 Reduce computation footprint by 99%+

 Reduce computation time by eliminating IO and reducing
communication costs

 Challenges:
 How to we make the compute approach work?

 How do we store data to enable analysis later?

8



Can’t Current Models Work?

 Existing compute models can—with a little help

 Existing IO models cannot since they depend on whole
domains being written
 HDF5, NetCDF, PnetCDF, ADIOS, and others all have this “feature”

9



Addressing Computation

 Rethink as a series of small problems

 Build “glue” for overlapping areas and to initialize unvisited
areas

 Make traversal algorithm and scripting that also handles
resilience

10



Illustrative Example (SPPARKS)

11

Grain growth across a large domain is simulated using a series of
smaller overlapping sub-volumes.

Post-process, visualize and analyze on arbitrary sub-volumes
and arbitrary times

Sub-volumes Overlap
Domain grows as
new material is added



Illustrative Example

 Orange/Purple/Green
vs. Blue

12



Addressing IO

 Rethink how IO should work:
 Lazy

 Only track what has been seen so far (i.e., we don’t care about the size of
the simulation domain)

 Minimal

 Only write was has changed since last output

 Eventually Consistent

 Rely on the output to eventually “make sense”

 Construct arbitrary requested domain on demand

 Reading specifies an arbitrary region and a time; Stitch-IO
assembles (‘stitches’) the region state together from various
pieces using the newest for every point

13



Stitch-IO – A New IO Approach

 Stitch-IO changes the rules
 Does not require global domain setup

 Offers support for combining data from multiple outputs into a single
blob

 Selecting a region that goes behind the active region will get previously
completed data even though it has not been written during the latest
output

 Uses floating point numbers (with absolute and relative tolerances)
for identifying a time epoch

 Uses a standard format for easy, direct access from other tools
(SQLite)

 Supports writing at both the current, new time and older (existing or
not) times without ill effect.

 Simultaneous writing and reading is assumed and fully supported.

14



Stitch-IO – A New IO Approach

 Written in C with a full capability Python module interface

 Has both a serial (single process) and parallel (MPI-based)
interface for C and Python.
 The only difference is passing a communicator to the `open’

command. Calls are invisibly parallel and efficient if can be optimized.

 Play along at home:

 https://github.com/gflofst/Stitch-IO

 You can build on a basic Linux setup for most clusters trivially
with late model Python3, numpy, and a C compiler (and MPI
for parallel builds).

15



Stitch-IO Schema

 SQLite storage format opens easy direct data access
 Extend functionality without changing library using Python native API

16



Example Application Use

Digital twin creation for Additive Manufacturing

 Use a .STL file as source

 Use Slic3r to generate g-code to drive simulation
 Fixup the g-code into an execution script

 Run the simulation

 Use AM machine slicer to generate machine specific g-code
 Run the AM machine with the g-code

 Use CT Scanner to get internal images of physical part to
compare against simulation

 Use simulation results to test other physics

17



A series of computation volumes

 Limit simulation domain in memory to just a small part that
we will compute over.

 HAZ = Heat Affected Zone

 Laser Path is the AM machine laser path

18



Slicing

 Slic3r used to generate paths

 Alternating layers. Red outline is perimeter, blue is laser path
with a fill angle of 35 degrees.

19



Path Pruning

 Get rid of places where the laser is turned off just to move to
a new starting position

20



How Stitch-IO Reduces Computation

 Computational volumes limit total domain

 Left: Geometry and Slic3r z-cut path lines

 Middle: Computational volumes bounding boxes

 Right: Simulated layer (red border is no data present)

21



Staircase example

 Sizes in mm

22



Forming the Staircase

 4 different paths
 (UDLR, RLUD, DURL, LRDU)

 Each colored dot is metallic powder. The
larger colored areas are metal grains
formed by the laser melt.

 Top graphic shows the laser path. It
starts in each corner iteratively and
follows a different path.

 Bottom graphic shows errors in the
edges of a staircase causing weaknesses
and the large color bars indicate large
grain growth.

23



Stitch-CAD for Digital Twins

Simulate rather than build and destructively test

 From CAD file that can be used by the AM machine
1. Use Slic3r to generate path (G-code)

2. Split G-code into layers

3. Prune each layer

4. For each laser path

1. Calculate a computational volume

2. Initialize the computational volume

3. Run simulation

5. End for

 See microstructure generation identifying parameter issues
that will generate parts with inadequacies.

 Iterate in simulation to find the best parameters
24



API Basics

 from stitch.libstitch import libstitch

 (rc, file_id) = libstitch.open (“filename”)

 rc = libstitch.close (file)

 (rc, new_time) = libstitch.write_block (file, field_id,
timestamp, block, state)
 Timestamp is a real

 Block is 6 ints representing the (x,y,z)-(x,y,z) min max pairs

 State is a linearization of the block (typical memory layout)

 new_time is a flag to indicate if this time has been used before or not
as a sanity check

 (rc, state, new_time) = libstitch.read_block (file, field_id,
timestamp, block)
 Same as write

25



API Basics

 (rc, field_id) = libstitch.create_field (file, ‘field_name’, 1, 1, -1)
 Type 1 is 32-bit int (C has an enum)

 Length 1 is single element (C has an enum)

 Default value is -1

 (rc, field_id) = libstitch.query_field (file, ‘field_name’)

 (rc, times) = libstitch.get_times (file)
 list of times used

 (rc, field_ids, labels, t, lengths, no_value_presents) =
libstitch.get_fields (file)
 The field attributes

26



API Basics

 rc = libstitch.set_parameters (file, abs_tol, rel_tol, nvp)
 Optional as these are defaulted

 (rc, abs_tol, rel_tol, nvp, first_time, last_time) =
libstitch.get_parameters (file)
 Mainly to get the min and max time in the file

 rc = libstitch.set_field_no_value_present (file, field_id,
nvp_val) – value to initialize areas with no value

27



Benefits and Challenges

 Move from 1000s process to 10s (cluster to a laptop)

 Radical data size reduction (about 1% or less losslessly)

 Wall clock time the same or smaller (less output time)
 Spray model went from > 24 hours to 6-8 hours; latest changes may

reduce that to 4 hours

 New simulations are pushing things hard (400+ million blocks)

 Open Source (LGPL) at https://github.com/gflofst/Stitch-IO

 Paper at IPDPS 2020

 Email: gflofst@sandia.gov
28



Other ideas for using Stitch-IO

 Any image data-based application

 CT scans
 Explore regions across images

29



Future Work

 Continue to work on scalability with SPPARKS

 Additional application examples and other domains

 Working with any of you on new problems

 gflofst@sandia.gov

30


