
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Simulating Additive
Manufacturing By
Rethinking Simulation
Structures

Jay Lofstead, John Mitchell

Enze Chen, Manisha Ganesh, Gavin St. John

gflofst@sandia.gov

SAND2020-3862 C



Mod/Sim Typical Structure

 Examples:
 CFD, heat transfer, molecular dynamics

 Compute on every element every timestep

 Mesh types vary, but most are 3D today

 Deploy across machine balancing compute vs. communication

2



Another class of physical models

 Activity focused in a small subset of simulation domain
 Welding

 Additive manufacturing (small parts)

 Spray

 Pressure waves in material

 Domain too large to fit into memory
 Additive manufacturing at scale

 Satellite fuel tank cap 3D printed (1.16m diameter, 10 cm thick)

 https://news.lockheedmartin.com/2018-07-11-Giant-Satellite-Fuel-Tank-
Sets-New-Record-for-3-D-Printed-Space-Parts

3



Welding example

 1 site per micron

 Move heat affected zone across powder or piece edges to
melt and form new piece

4



Spray accumulation model

 Spray a material (e.g., paint) and model the accumulation

5



Additive Manufacturing (single layer)

AM demo simulation

 Similar to welding, but sweeping and ultimately multi-layer

 Move heat affected zone across powder or piece edges to
melt and form new piece



What these share

 In all cases, the area that changes after a computation round
is highly localized

 Total area can be large leading to 1% or less use of allocated
compute resources

 IO costs would dominate and storage space used would be
overwhelming with vast unchanging data between timesteps

7



New Approach

 Idea: Only compute on part of domain that will be affected
“soon”
 Split simulation run into a series of computational volumes and write

data progressively

 Reduce computation footprint by 99%+

 Reduce computation time by eliminating IO and reducing
communication costs

 Challenges:
 How to we make the compute approach work?

 How do we store data to enable analysis later?

8



Can’t Current Models Work?

 Existing compute models can—with a little help

 Existing IO models cannot since they depend on whole
domains being written
 HDF5, NetCDF, PnetCDF, ADIOS, and others all have this “feature”

9



Addressing Computation

 Rethink as a series of small problems

 Build “glue” for overlapping areas and to initialize unvisited
areas

 Make traversal algorithm and scripting that also handles
resilience

10



Illustrative Example (SPPARKS)

11

Grain growth across a large domain is simulated using a series of
smaller overlapping sub-volumes.

Post-process, visualize and analyze on arbitrary sub-volumes
and arbitrary times

Sub-volumes Overlap
Domain grows as
new material is added



Illustrative Example

 Orange/Purple/Green
vs. Blue

12



Addressing IO

 Rethink how IO should work:
 Lazy

 Only track what has been seen so far (i.e., we don’t care about the size of
the simulation domain)

 Minimal

 Only write was has changed since last output

 Eventually Consistent

 Rely on the output to eventually “make sense”

 Construct arbitrary requested domain on demand

 Reading specifies an arbitrary region and a time; Stitch-IO
assembles (‘stitches’) the region state together from various
pieces using the newest for every point

13



Stitch-IO – A New IO Approach

 Stitch-IO changes the rules
 Does not require global domain setup

 Offers support for combining data from multiple outputs into a single
blob

 Selecting a region that goes behind the active region will get previously
completed data even though it has not been written during the latest
output

 Uses floating point numbers (with absolute and relative tolerances)
for identifying a time epoch

 Uses a standard format for easy, direct access from other tools
(SQLite)

 Supports writing at both the current, new time and older (existing or
not) times without ill effect.

 Simultaneous writing and reading is assumed and fully supported.

14



Stitch-IO – A New IO Approach

 Written in C with a full capability Python module interface

 Has both a serial (single process) and parallel (MPI-based)
interface for C and Python.
 The only difference is passing a communicator to the `open’

command. Calls are invisibly parallel and efficient if can be optimized.

 Play along at home:

 https://github.com/gflofst/Stitch-IO

 You can build on a basic Linux setup for most clusters trivially
with late model Python3, numpy, and a C compiler (and MPI
for parallel builds).

15



Stitch-IO Schema

 SQLite storage format opens easy direct data access
 Extend functionality without changing library using Python native API

16



Example Application Use

Digital twin creation for Additive Manufacturing

 Use a .STL file as source

 Use Slic3r to generate g-code to drive simulation
 Fixup the g-code into an execution script

 Run the simulation

 Use AM machine slicer to generate machine specific g-code
 Run the AM machine with the g-code

 Use CT Scanner to get internal images of physical part to
compare against simulation

 Use simulation results to test other physics

17



A series of computation volumes

 Limit simulation domain in memory to just a small part that
we will compute over.

 HAZ = Heat Affected Zone

 Laser Path is the AM machine laser path

18



Slicing

 Slic3r used to generate paths

 Alternating layers. Red outline is perimeter, blue is laser path
with a fill angle of 35 degrees.

19



Path Pruning

 Get rid of places where the laser is turned off just to move to
a new starting position

20



How Stitch-IO Reduces Computation

 Computational volumes limit total domain

 Left: Geometry and Slic3r z-cut path lines

 Middle: Computational volumes bounding boxes

 Right: Simulated layer (red border is no data present)

21



Staircase example

 Sizes in mm

22



Forming the Staircase

 4 different paths
 (UDLR, RLUD, DURL, LRDU)

 Each colored dot is metallic powder. The
larger colored areas are metal grains
formed by the laser melt.

 Top graphic shows the laser path. It
starts in each corner iteratively and
follows a different path.

 Bottom graphic shows errors in the
edges of a staircase causing weaknesses
and the large color bars indicate large
grain growth.

23



Stitch-CAD for Digital Twins

Simulate rather than build and destructively test

 From CAD file that can be used by the AM machine
1. Use Slic3r to generate path (G-code)

2. Split G-code into layers

3. Prune each layer

4. For each laser path

1. Calculate a computational volume

2. Initialize the computational volume

3. Run simulation

5. End for

 See microstructure generation identifying parameter issues
that will generate parts with inadequacies.

 Iterate in simulation to find the best parameters
24



API Basics

 from stitch.libstitch import libstitch

 (rc, file_id) = libstitch.open (“filename”)

 rc = libstitch.close (file)

 (rc, new_time) = libstitch.write_block (file, field_id,
timestamp, block, state)
 Timestamp is a real

 Block is 6 ints representing the (x,y,z)-(x,y,z) min max pairs

 State is a linearization of the block (typical memory layout)

 new_time is a flag to indicate if this time has been used before or not
as a sanity check

 (rc, state, new_time) = libstitch.read_block (file, field_id,
timestamp, block)
 Same as write

25



API Basics

 (rc, field_id) = libstitch.create_field (file, ‘field_name’, 1, 1, -1)
 Type 1 is 32-bit int (C has an enum)

 Length 1 is single element (C has an enum)

 Default value is -1

 (rc, field_id) = libstitch.query_field (file, ‘field_name’)

 (rc, times) = libstitch.get_times (file)
 list of times used

 (rc, field_ids, labels, t, lengths, no_value_presents) =
libstitch.get_fields (file)
 The field attributes

26



API Basics

 rc = libstitch.set_parameters (file, abs_tol, rel_tol, nvp)
 Optional as these are defaulted

 (rc, abs_tol, rel_tol, nvp, first_time, last_time) =
libstitch.get_parameters (file)
 Mainly to get the min and max time in the file

 rc = libstitch.set_field_no_value_present (file, field_id,
nvp_val) – value to initialize areas with no value

27



Benefits and Challenges

 Move from 1000s process to 10s (cluster to a laptop)

 Radical data size reduction (about 1% or less losslessly)

 Wall clock time the same or smaller (less output time)
 Spray model went from > 24 hours to 6-8 hours; latest changes may

reduce that to 4 hours

 New simulations are pushing things hard (400+ million blocks)

 Open Source (LGPL) at https://github.com/gflofst/Stitch-IO

 Paper at IPDPS 2020

 Email: gflofst@sandia.gov
28



Other ideas for using Stitch-IO

 Any image data-based application

 CT scans
 Explore regions across images

29



Future Work

 Continue to work on scalability with SPPARKS

 Additional application examples and other domains

 Working with any of you on new problems

 gflofst@sandia.gov

30


