A Secure Access Control Architecture for Multi-Tenancy Cloud Environments

Ronald Beaubrun Department of Computer Science and Software Engineering Laval University Quebec, Canada e-mail: ronald.beaubrun@ift.ulaval.ca

Alejandro Quintero Department of Computer and Software Engineering Polytechnique Montreal Montreal, Canada e-mail: alejandro.quintero@polymtl.ca

Outline

INTRODUCTION

CONTEXT AND BACKGROUND

EXISTING METHODS AND MODELS

THE PROPOSED ARCHITECTURE

A USE CASE SCENARIO

CONCLUSION

INTRODUCTION

Multi-tenancy

 Customers share computing resources, including CPU time, network bandwidth, data storage space, with other users.

Access control

- Security feature that controls how users and systems communicate and interact with other systems and resources.
- 3 types : physical access control, technical access control and administrative access control.

CONTEXT AND BACKGROUND

- Model for a multi-tenant cloud service provider
- 3 main components
 - Cloud manager
 - Hypervisor or Virtual Machine Manager
 - Virtual Machines
- Types of possible attacks
 - Virtual Machine (VM) Hopping
 - Denial of Service (DoS)

EXISTING METHODS AND MODELS

- Distributed Access Control (DAC)
 - 3 main components: Cloud Service Provider (CSP), Cloud Service Consumer (CSC) and Identity Provider (IdP)
- Adaptive access algorithm
 - Combination of trust management and Role-Based Access Control (RBAC)
 - Based on loyalty
- Multi-Tenancy Access Control Model (MTACM)
 - Based on limiting the management privilege of Cloud Service Provider and letting the customers manage the security of their own business.

EXISTING METHODS AND MODELS (cont'd)

- Role-Based Multi-Tenancy Access Control (RB-MTAC)
 - Combination of identity management and role-based access control.
- CloudPolice
 - Hypervisor-based access control mechanism
 - Effective to prevent denial of service (DoS) attacks

THE PROPOSED ARCHITECTURE

• Main assumptions

- The virtual machines and physical servers are co-located at the same cloud provider.
- Each physical server has only one hypervisor.
- Each physical server is hosting at least one tenant, and each tenant has at least one virtual machine.
- All access control lists are defined and stored in the hypervisor
- In its startup process, a hypervisor sends an update message to the other hypervisors that are located at the same Cloud

THE PROPOSED ARCHITECTURE (cont'd)

- Principles
 - Source VM
 - Destination VM
 - Control packet
 - Incoming/outgoing traffic filter
 - Access control list

THE PROPOSED ARCHITECTURE (cont'd)

Flowchart

THE PROPOSED ARCHITECTURE (cont'd)

Destination hypervisor's tasks upon control packet reception

A USE CASE SCENARIO

- 3 physical servers
 - Server 1: Tenant 1 (VM1, VM2) and Tenant 2 (VM3)
 - Server 2: Tenant 1 (VM4, VM5) and Tenant 3 (VM6, VM7)
 - Server 3: Tenant 4 (VM8) and Tenant 3 (VM9, VM10)

A USE CASE SCENARIO (cont'd)

Illustration of phase one

A USE CASE SCENARIO (cont'd)

Illustration of phase 2

CONCLUSION

• Advantages of the proposed architecture

- Scalability
- Security
- Future works
 - Implementing a prototype of the proposed architecture

Questions?

