
Results from More Than Two Decades 
of Exploiting Efficient Abstractions 
and Translation to SAT to Formally 

Verify Complex 
Pipelined/Superscalar/VLIW 

Microprocessors 
Miroslav N. Velev (miroslav.velev@aries-da.com) 

 

 

Keynote at NetWare’21 - CENICS’21 

            an            conference 
 

mailto:miroslav.velev@aries-da.com
mailto:miroslav.velev@aries-da.com
mailto:miroslav.velev@aries-da.com


2 

Speaker Bio 
Miroslav N. Velev received B.S.&M.S. in Electrical Engineering, and 
B.S. in Economics from Yale University in 1994, and Ph.D. in Electrical 
and Computer Engineering from Carnegie Mellon University in 2004.     
In 2005 he started Aries Design Automation (Chicago, USA), where he 
is President and leads R&D on formal verification, AI, and other topics. 
Distinctions: 
•  Fellow, American Association for the Advancement of Science 

(AAAS), 2017; 
•  Associate Fellow, American Institute of Aeronautics and Astronautics 

(AIAA), 2017;  
•  Distinguished Member (Scientist) of ACM, 2014; 
Awards: 
•  IEEE Aerospace and Electronic Systems Society (AESS) Industrial 

Innovation Award, 2021; 
• EDAA Outstanding Dissertation Award, 2005; 
• Franz Tuteur Memorial Prize for the Most Outstanding Senior Project 

in Electrical Engineering, Yale University, 1994. 



3 

Motivation 
Formal Verification (FV) is mathematically based proof of 
correctness of computer systems; if it scales, FV is 
exhaustive 

FV is critical, e.g. Boeing 737 Max crisis: 346 people dead, 
>$18.6B loss for Boeing, >$6B for airlines 

 
 
 
 

 

Cost of microprocessor bugs in weapon systems can be 
greater, including compromised national security 



4 

Outline 

EUFM Background: Positive Equality 
Block-Level Translation to SAT 
Applications to Formally Verify Different Architectures 
Conclusion 



5 

Gate-Level Microprocessor 

 Data: vectors of wires 
 ALUs and memories: gates 

Formal verification complexity is exponential 
 Details in [Velev & Bryant, FMCAD ’98] 

ID/EX EX/WB 

Data 
A 
L 
U 

IF/ID 

PC DestReg 

SrcReg 
Valid 

Op 

Instr 
Mem Reg 

File 

+4 

32 32 
7 
5 

= 5 

0 
1 



6 

Two-Step Formal Methodology 

1) Formally verify the Functional Units  (FUs) and 
Memories in isolation from the rest of the design 

2) Formally verify the pipelined/superscalar/VLIW 
processor after abstracting the FUs and memories, 
but keeping the fully implemented control logic, data 
flow, placement of FUs and memories in pipeline 
stages 
 using our tool, HighCheck 
 applying suitable modeling techniques 

 



7 

Abstracting Data 

x ⇒ 
b0 
b1 
b2 

bn-1 
. .

 . 

Terms abstract data values 

Properties: 
 Equality comparison: 

 

 Can be stored in memories 
 Can be selected with ITE operators: 

x 

y 
= (x = y) 

x 
y 

f 

ITE(f, x, y) 
1 
 

0 

true 
x 
y x 1 

 
0 

false 
x 
y y 1 

 
0 



8 

Abstracting ALUs 
Uninterpreted Functions abstract computations 

 internal implementation details removed 

F 

 functional consistency: 

F y1 
x1 

       F(x1,y1) F y2 
x2 

       F(x2,y2) 

(x1 = x2) ∧  (y1 = y2)   ⇒   F(x1,y1) = F(x2,y2) 



9 

Abstracting Memories 
FSM model: 

write 

read 

m 

wd 

a 
rd 

Functions write and read abstract memory operations 
 Forwarding property: 
 read(write(m1, a1, wd), a2)  =  ITE(a2 = a1,  wd,  read(m1, a2)) 



10 

Application of Abstractions 
ID/EX EX/WB 

Data 
A 
L 
U 

IF/ID 

PC DestReg 

SrcReg 
Valid 

Op 

Instr 
Mem Reg 

File 

+4 

32 32 
7 
5 

= 5 

0 
1 



11 

Application of Abstractions 
ID/EX EX/WB 

Data 
A 
L 
U 

IF/ID 

PC DestReg 

SrcReg 
Valid 

Op 

Instr 
Mem Reg 

File 

+4 

= 

0 
1 

⇒ More general processor 
 easier to prove correct 

Functional units & memories formally verified separately 

F1 

Mem2 
Mem1 F2 



12 

Specification Processor 

Data 

PC DestReg 

SrcReg 
Valid 

Op 

Instr 
Mem Reg 

File 

+4 F1 

Mem2 
Mem1 

 single-cycle execution 
 only user-visible state 
 much simpler control logic 

F2 



13 

Safety Correctness Criterion 

Q0
impl Q1

impl Fimpl 

Flush 

Q0
spec Q1

spec Fk
spec 

Flush 

Term-level symbolic simulation 
of Implementation for 1 clock cycle 

symbolic initial state 
(represents 
ANY initial state) 



14 

Term-Level Symbolic Simulation 

Fimpl 

ID/EX EX/WB 

A 
L 
U 

= 

DestReg 

SrcReg 
Valid 

Op 

0 
1 

F2 

wa 

wv 

ea 
eop 

Data ed 

es 
ev 

(es = wa) 
(es = wa) ∧ wv 

wd 

ITE((es = wa) ∧ wv, wd, ed) 

ID/EX EX/WB 

A 
L 
U 

= 

DestReg 

SrcReg 
Valid 

Op 

0 
1 

F2 Data 
F2(eop, ITE((es = wa) ∧ wv, wd, ed)) 

ea 

ev 

F2(eop, ITE((es = wa) ∧ wv, wd, ed)) 



15 

Safety Correctness Criterion 

Flush, Burch & Dill [CAV ’94] 
 automatically maps state of pipeline to user-visible state 
 completes partially-executed instructions 

Q0
impl Q1

impl Fimpl 

Flush 

Q0
spec Q1

spec Fk
spec 

Flush 



16 

Flushing 
ID/EX EX/WB 

Data 
A 
L 
U 

IF/ID 

PC DestReg 

SrcReg 

Op 

Instr 
Mem Reg 

File 

+4 

= 

0 
1 

F1 

Mem2 
Mem1 

Valid 

F2 



17 

Flushing 
ID/EX EX/WB 

Data 
A 
L 
U 

IF/ID 

PC DestReg 

SrcReg 
Valid 

Op 

Instr 
Mem Reg 

File 

+4 

= 

0 
1 

F1 

Mem2 
Mem1 

 Flush = false  during regular operation 
 Flush = true  during flushing 

Flush 

F2 

Presenter
Presentation Notes
When Flush = true, PC is not updated and bubbles are inserted in the pipeline.



18 

Safety Correctness Criterion 

Q0
impl Q1

impl Fimpl 

Flush 

Q0
spec Q1

spec Fk
spec 

Flush 

Requirement 
 One pipelined Impl step Fimpl matches up to k Spec steps Fspec 
 k is issue-width of processor 
 stalled or canceled instruction: k =0 



19 

Safety Correctness Criterion 
In the general case:   equality0  ∨  equality1  ∨  . . . ∨  equalityk   =   true 

 

 
 
 
 
 
 
   

i.e., a proof that 1 step of the Implementation corresponds to between 0 and k 
steps of the Specification, where k is the issue width of the Implementation 
 

F Impl 

F Spec 

Flush 

Q Impl 

Flush 

Q 1 
Impl 

Q ∗ 
Spec 

equality k 

Q 0 
Spec 

equality 1 

= 

F Spec F Spec 

equality 2 

.  .  . 

k  steps 

1  step 

equality 0 

= 

= = 

Q 1 
Spec Q 2 

Spec Q k 
Spec 

.  .  . 

Q0
impl 

Fimpl Q1
impl 

Fimpl Q2
impl 

Fimpl . . . 

This is the inductive step of proof by induction: initial Impl state QImpl is  
arbitrary => criterion will hold from ANY state, including next Impl state Q1

Impl 



20 

Liveness Correctness Criterion 
In the general case:   equality1  ∨  . . . ∨  equalityk * l   =   true 

 

 
 
 
 
 
 
   

i.e., a proof that l steps of the Implementation correspond to between 1 and   
k * l steps of the Specification, where k is the issue width of the 
Implementation 
Indirect method to prove this property: [Velev, ASP-DAC’04] 
 

F Impl 

F Spec 

Flush 

Q Impl 

Flush 

Q 1 
Impl 

Q ∗ 
Spec 

equality k 

Q 0 
Spec 

equality 1 

= 

F Spec F Spec 

equality 2 

.  .  . 

k * l  steps 

l steps 

= = 

Q 1 
Spec Q 2 

Spec Q k 
Spec 

.  .  . 



21 

Our Tool: HighCheck 
Implementation 
Processor (Verilog) 

Specification 
Processor (Verilog) 

Simulation Commands 

        Symbolic Simulator 

EUFM Correctness formula 

Decision Procedure 

Boolean  
Correctness formula 

SAT procedure 

counterexample correct 

? 

  Counterexample Analyzer 



22 

Restriction 1 

= 

Valid Data1 

Data2 

PC 

Abstract data equalities that are both positive & negated 
Example 1: Branch-on-equal decisions 

⇒
 uninterpreted predicate 

PC 
Valid Data1 

Data2 
P1 

Note: Can still model the same features 



23 

Restriction 2: Data Memory Model 
read and write: abstract memory operations 
 m2 ←  write(m1, a1, wd) 

 rd ←  read(m2, a2) 
 

Forwarding property: 
  rd  =  ITE(a2 = a1,  wd,  read(m1, a2)) 

FSM model: 

write 

read 

m 

wd 

a 
rd 

F1 

F2 

F1 

F2 
Conservative  
approximation 
of memory Forwarding property NOT enforced 

  rd  =  ITE(a2 = a1,  wd,  read(m1, a2)) 



24 

Positive Equality 

By imposing some simple restrictions on the processor 
modeling style, we obtain a special structure of the 
correctness formula, where: 
 P-terms are compared only in positive equations 

 Connected only with monotonically positive operators AND, OR 

 G-terms are compared in both positive and negated 
equations 

 As a result of the restrictions, most of the terms 
become p-terms and can be treated as DISTINCT 
CONSTANTS 

 G-terms are assigned small domains of values that 
have to be indexed with fresh Boolean variables 



25 

Outline 

EUFM Background: Positive Equality 
Block-Level Translation to SAT 
Applications to Formally Verify Different Architectures 
Conclusion 

 



26 

Motivation for Previous Efficient 
Translation to CNF 

CNF-based SAT-solvers face 2 main hurdles: 
 Boolean Constraint Propagation (BCP) 

 Up to 90% of the SAT time 

 Many cache misses for big formulas 

Conventional CNF translation [Tseitin 68]: 
 Variable for every signal 
 Set of clauses for every logic gate 

We can speed up SAT solving by merging adjacent logic 
gates and representing them with a unified set of clauses 
without variables for intermediate signals 

Presenter
Presentation Notes
View it as a slide show first.  It will highlight important aspects of your presentation, and give you an example of a presentation that lives up to ITC presentation standards and guidelines.
Virus checker:  When we created this presentation guide it contained no known viruses.  This file was checked by McAfee Virus Scan 7.x software before being distributed to authors.  You should use a good, up to date virus checker on this file, and any other file you import from an outside source.  Make sure your virus checker’s data files are up to date, too.  Keep in mind:  the version of this file you are reading may be different from the version we checked!
Confidentiality: We respect your copyright, and do not distribute your presentation before the conference.  However, we cannot promise strict confidentiality of your presentation before the conference, because others have read access to our FTP sites.  Do not include confidential information in your presentation.
Test Slide:  A test slide is included as a “hidden slide” after the end of this presentation.  If you want to do a trial projection, ensure that your projector projects the entire slide, and that aspect ratios are correct.  We will use the same test slide at the conference for setup of our projection equipment.



27 

Example: AND→ITE group 
  o ← ITE(i, t, e) 
  t ← AND(a1, ..., an)           fanout_count(t) = 1 
 equivalent constraints in the new translation: 
  i ∧ ¬a1 ⇒ ¬o 
  . . . 
  i ∧ ¬an ⇒ ¬o 
  i ∧ a1 ∧ ... ∧ an ⇒ o 
  ¬i ∧ e ⇒ o 
  ¬i ∧ ¬e ⇒ ¬o 

Presenter
Presentation Notes
View it as a slide show first.  It will highlight important aspects of your presentation, and give you an example of a presentation that lives up to ITC presentation standards and guidelines.
Virus checker:  When we created this presentation guide it contained no known viruses.  This file was checked by McAfee Virus Scan 7.x software before being distributed to authors.  You should use a good, up to date virus checker on this file, and any other file you import from an outside source.  Make sure your virus checker’s data files are up to date, too.  Keep in mind:  the version of this file you are reading may be different from the version we checked!
Confidentiality: We respect your copyright, and do not distribute your presentation before the conference.  However, we cannot promise strict confidentiality of your presentation before the conference, because others have read access to our FTP sites.  Do not include confidential information in your presentation.
Test Slide:  A test slide is included as a “hidden slide” after the end of this presentation.  If you want to do a trial projection, ensure that your projector projects the entire slide, and that aspect ratios are correct.  We will use the same test slide at the conference for setup of our projection equipment.



28 

This Translation Was Implemented for 
Following Gate Groups  

ITE-Chains: the else-input is another ITE 
ITE-trees 
AND→ITE  (AND is input to ITE) 
OR→ITE 
OR→AND (use FANIN heuristic to pick input) 
ITE→AND 
AND→OR 
ITE→OR 

Presenter
Presentation Notes
View it as a slide show first.  It will highlight important aspects of your presentation, and give you an example of a presentation that lives up to ITC presentation standards and guidelines.
Virus checker:  When we created this presentation guide it contained no known viruses.  This file was checked by McAfee Virus Scan 7.x software before being distributed to authors.  You should use a good, up to date virus checker on this file, and any other file you import from an outside source.  Make sure your virus checker’s data files are up to date, too.  Keep in mind:  the version of this file you are reading may be different from the version we checked!
Confidentiality: We respect your copyright, and do not distribute your presentation before the conference.  However, we cannot promise strict confidentiality of your presentation before the conference, because others have read access to our FTP sites.  Do not include confidential information in your presentation.
Test Slide:  A test slide is included as a “hidden slide” after the end of this presentation.  If you want to do a trial projection, ensure that your projector projects the entire slide, and that aspect ratios are correct.  We will use the same test slide at the conference for setup of our projection equipment.



29 

Producing More ITE-Trees 
We can preserve the ITE-tree structure of equation arguments when 

eliminating equations (T1 = T2),  

Example: ITE(c1, a1, a2) = ITE(c2, b1, b2) 

Before eliminated by pushing equation to its argument leaves until 
each argument is a variable:  

      c1 ∧ c2 ∧ (a1 = b1)    ∨   c1 ∧ ¬c2 ∧ (a1 = b2)   

 ∨   ¬c1 ∧ c2 ∧   (a2 = b1)    ∨    ¬c1 ∧ ¬c2 ∧ (a2 = b2) 

Now: 
ITE(c1,  ITE(c2, a1 = b1, a1 = b2),    
          ITE(c2, a2 = b1, a2 = b2)) 

Can further merge ITE-trees with 1 or more levels of AND or OR leaves 

Presenter
Presentation Notes
View it as a slide show first.  It will highlight important aspects of your presentation, and give you an example of a presentation that lives up to ITC presentation standards and guidelines.
Virus checker:  When we created this presentation guide it contained no known viruses.  This file was checked by McAfee Virus Scan 7.x software before being distributed to authors.  You should use a good, up to date virus checker on this file, and any other file you import from an outside source.  Make sure your virus checker’s data files are up to date, too.  Keep in mind:  the version of this file you are reading may be different from the version we checked!
Confidentiality: We respect your copyright, and do not distribute your presentation before the conference.  However, we cannot promise strict confidentiality of your presentation before the conference, because others have read access to our FTP sites.  Do not include confidential information in your presentation.
Test Slide:  A test slide is included as a “hidden slide” after the end of this presentation.  If you want to do a trial projection, ensure that your projector projects the entire slide, and that aspect ratios are correct.  We will use the same test slide at the conference for setup of our projection equipment.



30 

Results from This Translation 
Up to 420× speedup on unsatisfiable CNF formulas with 

 100,000s of variables 
 1,000,000s of clauses 
 10,000,000s of literals 

Best impact from preserving the ITE-tree structure of 
equation arguments and merging ITE-trees 

Details in [Velev, ASP-DAC’04], [Velev, DATE’04] 

Presenter
Presentation Notes
View it as a slide show first.  It will highlight important aspects of your presentation, and give you an example of a presentation that lives up to ITC presentation standards and guidelines.
Virus checker:  When we created this presentation guide it contained no known viruses.  This file was checked by McAfee Virus Scan 7.x software before being distributed to authors.  You should use a good, up to date virus checker on this file, and any other file you import from an outside source.  Make sure your virus checker’s data files are up to date, too.  Keep in mind:  the version of this file you are reading may be different from the version we checked!
Confidentiality: We respect your copyright, and do not distribute your presentation before the conference.  However, we cannot promise strict confidentiality of your presentation before the conference, because others have read access to our FTP sites.  Do not include confidential information in your presentation.
Test Slide:  A test slide is included as a “hidden slide” after the end of this presentation.  If you want to do a trial projection, ensure that your projector projects the entire slide, and that aspect ratios are correct.  We will use the same test slide at the conference for setup of our projection equipment.



31 

Benefits from Merging ITE-trees 
1) Reduced variables and clauses 
2) Reduced solution space 
3) Reduced BCP 
4) Automatic use of signal unobservability 

 as soon as an ITE controlling signal selects a branch, then all 
clauses for other branches in the ITE-tree become satisfied 

5) Reduced L2-cache misses 
6) Guiding the SAT-solver branching 
7) Higher ranking of variables controlling ITEs at the top of 

ITE-trees 
8) Faster solving of case-splitting conditions 

Presenter
Presentation Notes
View it as a slide show first.  It will highlight important aspects of your presentation, and give you an example of a presentation that lives up to ITC presentation standards and guidelines.
Virus checker:  When we created this presentation guide it contained no known viruses.  This file was checked by McAfee Virus Scan 7.x software before being distributed to authors.  You should use a good, up to date virus checker on this file, and any other file you import from an outside source.  Make sure your virus checker’s data files are up to date, too.  Keep in mind:  the version of this file you are reading may be different from the version we checked!
Confidentiality: We respect your copyright, and do not distribute your presentation before the conference.  However, we cannot promise strict confidentiality of your presentation before the conference, because others have read access to our FTP sites.  Do not include confidential information in your presentation.
Test Slide:  A test slide is included as a “hidden slide” after the end of this presentation.  If you want to do a trial projection, ensure that your projector projects the entire slide, and that aspect ratios are correct.  We will use the same test slide at the conference for setup of our projection equipment.



32 

Outline 

EUFM Background: Positive Equality 
Block-Level Translation to SAT 
Applications to Formally Verify Different Architectures 
Conclusion 

 
 



33 

Results 
Our tool flow scales for formally verifying correctness of:  
 complex pipelined/superscalar/VLIW processors with many features: 
  

 
 
 
 
 
 
 
 
 
 
 

 executable code for a given Instruction Set Architecture, including 
cybersecurity properties. 

 

• branch prediction  • delayed branches 
• exceptions • data-value prediction  
• multicycle functional units • mechanisms to correct soft errors 

by re-executing affected 
instructions 

• advanced and speculative loads  • reconfigurable functional units 

• predicated execution  • arrays of reconfigurable 
processing elements  

• register remapping  • multi-threaded execution 
• out-of-order execution based on  
    a reorder buffer 

• reconfigurable polymorphic 
heterogeneous multi-core 
architectures 



34 

FV of Complex Dual-Issue 
Superscalar Processors 
Exploiting Positive Equality to formally verify complex 

dual-issue superscalar processors 
 Two 5-stage DLX pipelines 
 Exceptions, multi-cycle functional units, and branch 

prediction were modeled in each pipeline, such that 
the instructions in the two pipelines interact 

 1 sec of CPU time to formally verify 
 Speedup: at least 5 orders of magnitude relative to 

not using Positive Equality 
 Details in [Velev & Bryant, IJES 2005] 

 



35 

We Formally Verified VLIW Processor 
(DSP) Based on Intel Itanium 

Intel Itanium® features: 
 
• Predicated execution 
• Advanced loads 
• Register remapping 
• Branch prediction 
• Exceptions 
• Multicycle functional 

units 
 
42 VLIW instructions 
9 pipeline stages 
4 VLIW-instruction queue 

13 minutes to formally verify on 1 CPU core 
Details in [Velev, CAV’00, ASP-DAC’04, DATE’04] 

Fetch 
 

Engine 

Int FU 1 Instr 1 
Instr 2 
Instr 3 
Instr 4 
Instr 5 
Instr 6 
Instr 7 
Instr 8 
Instr 9 

Int 
Reg 
File 
FP 
Reg 
File 

Pred 
Reg 
File 

BA 
Reg 
File 

Data 
Mem 

ALAT 

Int FU 2 
Int FU 3 
Int FU 4 

FP FU 1 

FP FU 2 

BA FU 1 

BA FU 2 
BA FU 3 

Branch 
Predictor 



36 

FV of Pipelined Processors That 
Detect & Correct Soft Errors 

RazorII fault-detecting flip-flops [Das et al. 2009] 
Instruction re-executed if soft error in any pipeline stage 
Details in [Velev & Gao, ICFEM’10] 

 



37 

FV of Pipelined Processors with 
Reconfigurable Functional Units 
A method to abstract reconfigurable functional units: 

Data      Op 

Result 

UF 
(Result) 

UF 
(Next_State) 

Configuration_Command 

Present_Configuration_State 

Details in [Velev & Gao, ASP-DAC’11 Invited Talk] 



38 

We Formally Verified ADRES 
Processor with Reconfigurable Array 

A Very Long Instruction Word (VLIW) processor, shown at the top, is 
combined with a coarse-grained reconfigurable array (a), where each  
reconfigurable functional unit (FU) has its dedicated register file (RF), 
and configuration memory (Conf. RAM), as shown in (b). 

VLIW processor 

Details in [Velev & Gao, ICFEM’11] 



39 

FV of Pipelined Processors with 
Hardware Support for Multithreading 
We developed abstraction techniques that allow us to 
formally verify pipelined processors with hardware 
support for ANY number of threads 
 Can scale for GPUs 
 
 
Details in [Velev & Gao, ICCAD’11] 

 



40 

Direct Model of Register File in 
Multithreaded Pipelined Processors 

Located in the Instruction Decode (ID) stage, with 
results for writing from the Write Back (WB) stage 

Register
File for

Write
Port

Enable
Addr
Data

Read
Port

Addr
Data

Thread 1

Register
File for

Write
Port

Enable
Addr
Data

Read
Port

Addr
Data

Thread 2

WB.Result
WB.DestReg
WB.ThreadId
WB.RegWrite

=

ThreadId1

=

ThreadId2

ID.SrcReg
ID.ThreadId

1
0

ReadData

=

ThreadId1



41 

Abstracted Register File (1 of 2) 

Unified model of all register files in pipelined processor 
with hardware support for any number of threads 

UF Form_register_file_address abstracts concatenation 
of register id and its corresponding thread id 

Register
File for

Write
Port

Enable
Addr
Data

Read
Port

Addr
Data

All

WB.Result
WB.DestReg
WB.ThreadId
WB.RegWrite

ID.SrcReg
ID.ThreadId

Threads ReadData

Form_register_file_address

Form_register_file_address



42 

Abstracted Register File (2 of 2) 

UF Form_register_file_address is also used in a 
modified version of forwarding and load-interlock 
stalling logic 

This is Design for Formal Verification 

Register
File for

Write
Port

Enable
Addr
Data

Read
Port

Addr
Data

All

WB.Result
WB.DestReg
WB.ThreadId
WB.RegWrite

ID.SrcReg
ID.ThreadId

Threads ReadData

Form_register_file_address

Form_register_file_address



43 

Abstract in Same Way Other 
Architectural State Elements 
E.g., Data Memory: 
 
 
 
 
 

write 

read 

m 

wd 

a 
rd 

ThreadId 



44 

Results 
Processor CNF Vars CNF Clauses Time [s] 
DSP_base 14,540 214,842 4.4 
DSP_threads_4 63,271 1,448,725 24 
DSP_threads_16 291,748 7,382,962 151 
DSP_threads_64 1,519,228 33,891,549 885 
DSP_threads_256 6,912,327 151,367,229 5,908 
DSP_abstraction 18,936 316,120 5.1 

Details in [Velev & Gao, ICCAD’11] 



45 

Polymorphic Heterogeneous  
Multi-Core Architectures 
Bahurupi architecture—several simple cores combined 

with coalition dispatch and completion logic to 
accelerate execution of 1 thread [Pricopi & Mitra 2012] 

 

 
 
 
Performance comparable or greater than that of wide 

superscalar design with issue width = sum of issue 
widths of the cores in a coalition, but lower power 
consumption, and higher reliability 



46 

We Formally Verified Polymorphic 
Heterogeneous Multi-Core 
Processor for Space Applications 

Large coalitions can accelerate  
mission-critical threads, e.g., to analyze 
trajectory of approaching missle and  
determine how to maneuver a jet fighter 
to avoid the missle 

Our method was showcased in  
NASA Tech Briefs (LEW-19207-1, 2014),  
which publishes only the best  
NASA-funded inventions 

We can formally verify such multi-core 
processors completely with our 
technology 



47 

Abstraction of Coalition Dispatch 

GPC = General PC 
  points to next BB to be 

fetched 
 initialized with address 

of first BB 
Each BB begins with a 

sentinel instruction 

ICache

AddrFirstInstrAfterSentinel

LiveInReg1

LiveInReg2

LiveInReg3

LiveOutReg1

GPC

LiveOutReg2

LiveOutReg3

NumInstrBB

EndIsBranch

AddrOf

selected
core

To

0
1 PredictedBranchTarget

PredictTaken

0
1

CorrectedBBAddress
CorrectBranchMisprediction

0
1

ProcessException

ExceptionHandlerAddress

DispatchSentinelToCore0
DispatchSentinelToCore1

Coalition
Completion

From

branch
predictor

From

Stage

GPC

NextBB

From control logic
in Fig. 3



48 

Abstraction of Control Logic That 
Selects Which Core to Dispatch to  

Flush signal is used to determine controlled flushing 

ReadyCore0

ReadyCore1

SelectCore0

SelectCore1

DispatchSentinelToCore0

DispatchSentinelToCore1

From
cores

From
generator
of
arbitrary
values

Flush



49 

Ticket Register in Dispatch 

Ticket Register in Dispatch Stage 
 gives unique id to each dispatched BB  
 incremented in each cycle when a BB is dispatched to a core 
 incrementing it is abstracted with UF NextTicket 

 
Serving Register in Completion Stage  

 contains id of next BB to be completed 
 Incrementing it also abstracted with UF NextTicket 

 
 
 



50 

Abstraction of Each Core 

3 FSMs, each abstracting the execution of a BB 
At most two FSMs have valid BBs initially 
The FSM with no BB can accept a new BB                  

non-deterministically 
An FSM with valid BB: 
 can compute its results non-deterministically in a 

cycle of regular symbolic simulation, as long as all 
input operands are available 

 computes the results of such a basic block in every 
clock cycle during flushing 

Computations abstracted with UFs and UPs 



51 

Modeling of Coalition Completion 
Stage 
Completes an entire BB per clock cycle 
 if the BB’s results are computed 
 and BB’s ticket equals the current value of the 

Serving register 
If the completed BB ends on a branch then 
 the condition for a branch misprediction is formed 

based on the branch prediction made for that BB in 
the Coalition Dispatch Stage 

Serving Register updated with term produced by UF 
NextTicket applied to current term for value of 
Serving Register  

 



52 

Required Invariants (1 of 2) 

1)  if there are k valid BBs in the cores, then the term 
abstracting the current value of the Ticket Register 
equals k applications of UF NextTicket to the term 
abstracting the current value of the Serving Register; 

2)  if a BB in a core is valid, then the term abstracting its 
ticket equals either the term for the current value of 
the Serving register, or up to k – 1 applications of UF          
NextTicket to the term for the current value of the 
Serving register, where k is the number of valid BBs 
in the cores; 

3)  if a BB in a core is valid, then the term abstracting its 
ticket does not equal the term abstracting the ticket 
of another valid BB in a core, or the current value of 
the Ticket Register; 



53 

Required Invariants (2 of 2) 

4)  if a BB in a core is valid, then each of its live-in 
registers either has its data value available, or the 
renaming tag of that live-in register equals the 
renaming tag of a live-out register whose data value 
is not computed yet, and that belongs to a valid BB 
that is in a core and has a ticket that is ahead of the 
ticket of the given BB, i.e., the term abstracting the 
ticket of the given BB is equal to one or more 
applications of UF NextTicket to the term abstracting 
the ticket of the BB that will compute the data value; 

5)  if a valid BB in a core is ready for completion, then 
the data values of its live-out registers, exception 
condition, as well as branch direction and target if 
the BB ends on a branch, have been computed. 

 



54 

Non-Pipelined Specification 

Defined to fetch, execute, and complete one BB per 
clock cycle 

Uses the same UFs and UPs to compute the results of 
instructions as the abstractions of the cores 

No branch prediction & no register renaming 
 



55 

Results 

Experiments on workstation with two 3.47-GHz six-core 
Intel Xeon x5690 processors, and 64 GB of memory, 
running Red Hat Enterprise Linux v6.4 (only a single 
core was used) 

 
Proving safety of model with 2 cores: < 1 sec 
Proving safety of model with 4 cores: < 3 sec 
Note: these times include the checking of the invariants 

 
Details in [Velev & Gao, ISQED’14] 



56 

Outline 

EUFM Background: Positive Equality 
Block-Level Translation to SAT 
Applications to Formally Verify Different Architectures 
Conclusion 

 
 
 



57 

Conclusion (1 of 2) 
We presented abstraction techniques that allow us to exploit the 

property of Positive Equality to formally verify a wide range of 
processor architectures very efficiently 

Positive Equality resulted in at least 5 orders of magnitude 
speedup when formally verifying complex dual-issue 
superscalar processors, which take 1 sec to formally verify, and 
the speedup is increasing with the processor complexity 

Block-level translation to SAT produced at least 2 additional orders 
of magnitude (420×) speedup 

These techniques: 
• outperform other approaches for formal verification of 

microprocessors by orders of magnitude 
• require minimal manual intervention 



58 

Conclusion (2 of 2) 
Our tool flow scales for formally verifying correctness of safety and 
liveness of complex pipelined/superscalar/VLIW processors with: 
  

 
 
 
 
 
 
 
 
 
 
 

CNF formulas generated in this work 20 years ago have been used in the 
development of all academic and industrial SAT solvers since then. 

• branch prediction  • delayed branches 
• exceptions • data-value prediction  
• multicycle functional units • mechanisms to correct soft errors 

by re-executing affected 
instructions 

• advanced and speculative loads  • reconfigurable functional units 

• predicated execution  • arrays of reconfigurable 
processing elements  

• register remapping  • multi-threaded execution 
• out-of-order execution based on  
    a reorder buffer 

• reconfigurable polymorphic 
heterogeneous multi-core 
architectures 



59 

Questions? 

 

Keynote Speaker: 

Miroslav N. Velev (miroslav.velev@aries-da.com) 

 
 

mailto:miroslav.velev@aries-da.com
mailto:miroslav.velev@aries-da.com
mailto:miroslav.velev@aries-da.com

	Slide Number 1
	Speaker Bio
	Motivation
	Outline
	Gate-Level Microprocessor
	Two-Step Formal Methodology
	Abstracting Data
	Abstracting ALUs
	Abstracting Memories
	Application of Abstractions
	Application of Abstractions
	Specification Processor
	Safety Correctness Criterion
	Term-Level Symbolic Simulation
	Safety Correctness Criterion
	Flushing
	Flushing
	Safety Correctness Criterion
	Safety Correctness Criterion
	Liveness Correctness Criterion
	Our Tool: HighCheck
	Restriction 1
	Restriction 2: Data Memory Model
	Positive Equality
	Outline
	Motivation for Previous Efficient Translation to CNF
	Example: ANDITE group
	This Translation Was Implemented for Following Gate Groups
	Producing More ITE-Trees
	Results from This Translation
	Benefits from Merging ITE-trees
	Outline
	Results
	FV of Complex Dual-Issue Superscalar Processors
	Slide Number 35
	FV of Pipelined Processors That Detect & Correct Soft Errors
	FV of Pipelined Processors with Reconfigurable Functional Units
	We Formally Verified ADRES Processor with Reconfigurable Array
	FV of Pipelined Processors with Hardware Support for Multithreading
	Direct Model of Register File in Multithreaded Pipelined Processors
	Abstracted Register File (1 of 2)
	Abstracted Register File (2 of 2)
	Abstract in Same Way Other Architectural State Elements
	Results
	Polymorphic Heterogeneous �Multi-Core Architectures
	We Formally Verified Polymorphic Heterogeneous Multi-Core Processor for Space Applications
	Abstraction of Coalition Dispatch
	Abstraction of Control Logic That Selects Which Core to Dispatch to 
	Ticket Register in Dispatch
	Abstraction of Each Core
	Modeling of Coalition Completion Stage
	Required Invariants (1 of 2)
	Required Invariants (2 of 2)
	Non-Pipelined Specification
	Results
	Outline
	Conclusion (1 of 2)
	Conclusion (2 of 2)
	Questions?

