

Dresden University of Technology

Institute of Electromechanical and Electronic Design

ALLSENSORS 2021

Design of Surface Acoustic Wave Motors With Non-piezoelectric Stator Material

Richard Günther, René Richter, Jens Lienig

Presenter: Richard Günther, Dresden University of Technology, richard.guenther@tu-dresden.de

July 2021

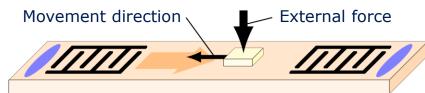
Introduction

- Richard Günther
 - 2003-2009: Study of Electronic Engineering at Dresden University of Technology
 - 2009-2013: Research assistant for approach developement of medical injection devices at Dresden University of Technology
 - From 2015: Lectureship for design fundamentals and numeric simulation at Berufsakademie Sachsen

9.5

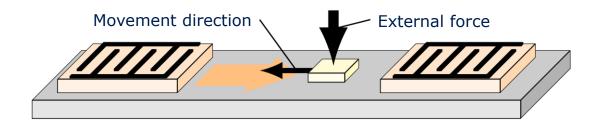
 Research on Surface Acoustic Wave motors since 2010 as part of PhD thesis

- Growing demand of decentral electric small drives
 - Illustration: More than 120 small drives in a car [1]
 - Often linear motion and self-locking required
 - Apart from electromagnetic motors piezoelectric motors are increasingly important
 - Surface Acoustic Wave (SAW) motors have simple design and high operating frequency
 - Miniaturizable and powerful

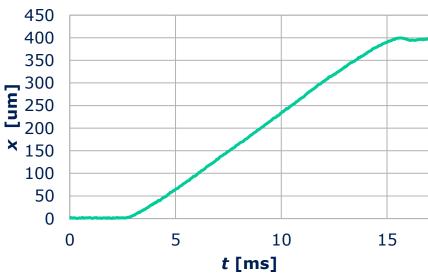


Functional principle of SAW motors:

- Existing SAW motor:
 - Technical Data [2, 3]:
 - Normal deflection of SAW: 21 nm
 - Blocking force: 9 N
 - Idling speed: 0,55 m/s
 - Positioning accuracy: 1 nm



- Existing SAW motor:
 - Disadvantage of existing SAW motor:
 - Whole stator is made from piezoelectric material (LiNbO₃)
 - Nearly no influence on material parameters (price, brittleness, friction coefficient)
- SAW motor with non-piezoelectric stator material avoids these disadvantages
 - Needs additional piezoelectric units


TECHNISCHE

DRESDEN

- We realized the first functional model of a SAW motor with non-piezoelectric stator material
- Characteristic values:
 - Operation frequency: 3.85 MHz
 - Applied voltage: 50 V_{0p}
 - Duration: 50.000 periods

Parameter	Value
Idling speed	29 mm/s
Blocking force	0,19 N

Slider position for load free operation

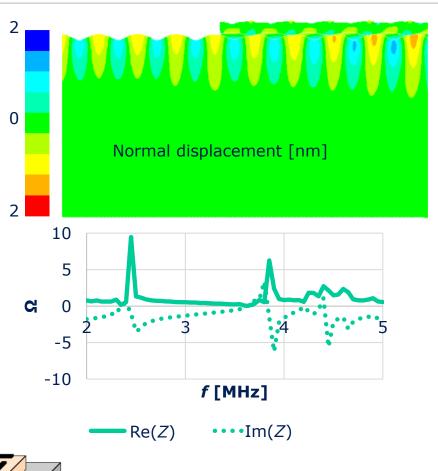
Gliederung

- **1** Numerical models
- 2 Guidelines for designing
- **3** Conclusion

Gliederung

1 Numerical models

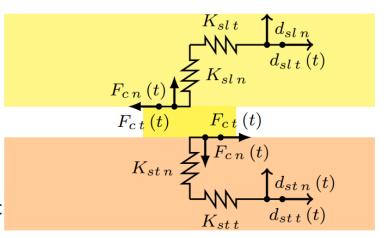
- **2** Guidelines for designing
- **3** Conclusion



Movement direction

- Model for dimensioning of piezoelectric unit
 - Normal polarized PZT block with continuous bottom electrode and IDT as outer electrodes
 - Transient 2D model using finite element method
 - Coupling of electrostatics and mechanics

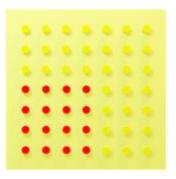
External force

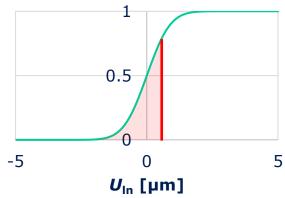


Movement direction

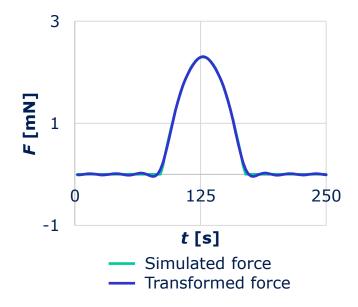
External force

- 1 Numerical models
- Motor model
 - Based on Existing model (by Shigematsu and Kurosawa)
 - Considers one projection
 - Elliptical displacement of stator allows three states
 - No contact
 - Sticking
 - Sliding
 - Tangential average force equals motor force
 - Varying slider speed allows considering the whole characteristic

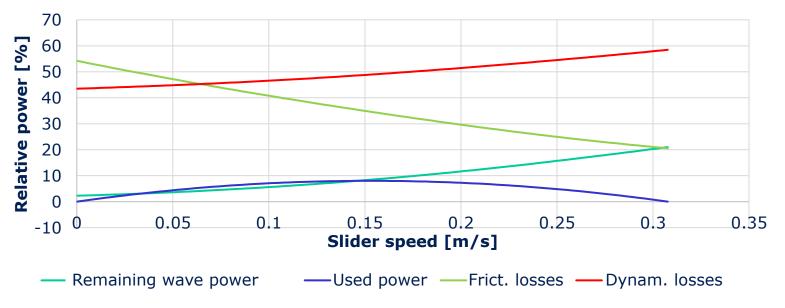




- Motor model based on existing model
 - Enhancement: Considering roughness and flatness
 - Assumption in existing motor model:
 - η =0.36: 36 % of all projections are contacted
 - Due to roughness and flatness this number would depend on contact force
 - Realistic implementation with normally distributed contact distances:
 - $F_{\rm N} = n_{\rm pr} K_{\rm gesn} \int_{-\infty}^{u_{\rm ln}} N(u_{\rm n}, R_{\rm au}) du_{\rm n}$
 - $\eta = N(u_{\text{In}}, R_{\text{au}})$


Design of Surface Acoustic Wave Motors With Non-piezoelectric Stator Material

- Motor model based on existing model
 - Enhancement: Dynamic losses
 - *Discrete Fourier transform* applied to *F*(*t*)
 - Determining mechanical Impedances for harmonic forces
 - Determining dynamic losses: $P_{dyn} = \sum_{i=0}^{m} P_i(\hat{F}_i, f_i)$

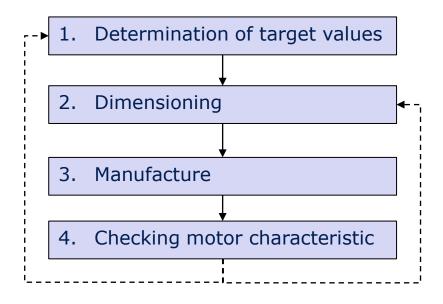

 f_{i} ... Frequency of oscillation i \hat{F}_{i} ... Force amplitude of oscillation i P_{i} ... Dynamic loss for frequency f_{i} m... Number of interferring oscillations P_{dyn} ... Overall dynamic loss

- Motor model based on existing model
 - Enhancement: Dynamic losses
 - Exemplary power components of existing SAW motor (normalized to initial power)

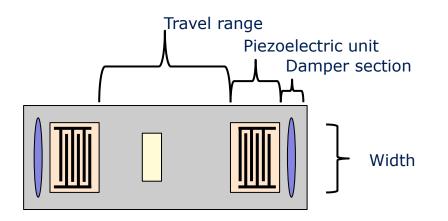
Gliederung

1 Numerical models

2 Guidelines for designing


3 Conclusion

- Limited for motors with PZT units adhered on metallic substrate and slider made from silicon
- Refeeding of SAW power not considered

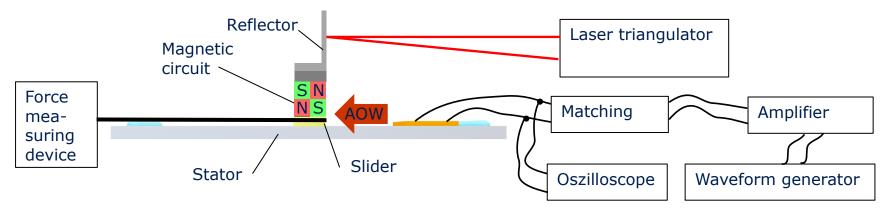


- 1. Determination of target values
 - Motor characteristic: Define blocking force and idling speed
 - Motor dimensions:
 - Width is proportional to motor power by constant SAW amplitude
 - Length is determined by travel range, length of piezoelectric units and the damper sections

- 2. Dimensioning
 - Dimensioning by motor model
 - Operating frequency: High values result in high idling speed
 - SAW amplitude and contact force: Vary by optimization to reach targeted motor characteristic for minimal SAW amplitude
 - Determining PZT thickness by modal analysis: Thickness must fit to targeted operating frequency
 - Dimensioning of stator by transient FEM model
 - Correction of PZT thickness and IDT's finger spacing
 - Fitting number of IDT's fingers: Increase number to avoid overload

- 3. Manufacture
 - Slider: Thin-layer technology without special features
 - Stator:
 - Metal plate must be lapped and polished
 - Piezoelectric unit: Apply ground electrode on PZT plate by sputtering and IDT by thick film technology; electrode material is gold
 - Piezoelectric unit must be adhered on metal plate with thin adhesive layer and electric contact between metal plate and ground electrode
 - Piezoelectric unit must be polarized normally, with the help of a temporarily applied silver lacquer on the top surface
 - Apply dampers behind the piezoelectric units by viscoelastic material
 - Build up an electric impedance matching

- 4. Checking motor characteristics
 - Test setup:
 - Connect waveform generator, amplifier, impedance matching and stator
 - Clean contact surfaces of stator and slider
 - Attach slider and magnets with iron counterplate carefully onto slider



4. Checking motor characteristics

- Control: Input energy may be limited by sinusoidal excitation in burst mode
- Measurements:
 - Idling speed: Determine by laser triangulator
 - Blocking force: Determine by force measuring device with force transducer crossing the travel path

Gliederung

- **1** Numerical models
- **2** Guidelines for designing
- **3 Conclusion**

3 Conclusion

- We presented detailed guidelines for designing a novel type of SAW motor with non-piezoelectric stator material
- Required numeric models are described
- These information enable further investigations into this motor type
- Aim is the market launch of a compact linearmotor with
 - High positioning accuracy,
 - High power density and
 - Inexpensive manufacturing

3 Conclusion

- We presented detailed guidelines for designing a novel type of SAW motor with non-piezoelectric stator material
- Required numeric models are described
- These information enable further investigations into this motor type
- Aim is the market launch of a compact linearmotor with
 - High positioning accuracy,
 - High power density and
 - Inexpensive manufacturing

Many thanks for your attention!