

Institut Matériaux Microélectronique Nanosciences Provence

Ozone Sensors Based on WO₃ Sputtered Layers Enhanced by Ultra Violet Light Illumination

Clément OCCELLI, Ph.D. Student

clement.occelli@im2np.fr

IM2NP UMR CNRS 7334

Clément Occelli, Sandrine Bernardini, Ludovic Le Roy, Tomas Fiorido, Jean-Luc Seguin, Carine Perrin-Pellegrino

Aix+Marseille UNIVERSITÉ

Clément Occelli received his engineering degree in Materials from the Polytech'Marseille engineering school, Marseille, in 2016. During this period, he was at the IM2NP institute at the Aix-Marseille University in France for 3 months, working on WO₃ sensor for ozone detection. He was in industry from 2017 until 2019 where his work was focused on materials and products testing. He is currently a 2nd year Ph.D. student back to the IM2NP Institute, developing hydrogen sensors for anaerobic environment.

2/19

Outline

I. Context, technology and detection principle

- a) A gaz to monitor : ozone
- b) Operating principle and sensor structure
- c) Ozone detection by sensitive film

II. Thin film deposition and crystalline structure

- a) WO₃ thin film deposition
- b) XRD diffractogram of WO₃ thin film

III. Sensor electrical characterization

- a) Sensor test bench
- b) UV illumination effect
- c) Sensor response for different sputtering parameters
- d) Comparison UV/heating

IV. Conclusion

I. Context, technology and detection principle

A Gaz to monitor : Ozone

Ozone presence in troposphere due to human activity :

Ozone formation

Ozone has hazardous impact on fauna and flora health

European and american environmental agency report respiratory symptoms for O_3 concentrations > 60ppb

- 1 Cough, Wheezing, throat irritation
- 2 Asthma attack and other respiratory disease
- 3 Hospitalization

\rightarrow Monitor and control O₃ concentration in air

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Operating principle and sensor structure

Dimension : 4x4mm Electrode thickness : 100nm Electrode gap : 50µm

Ozone detection by sensitive film

O₃ decomposes on WO₃ surface by reacting with free charge carriers

Upon increasing $[O_3]$: Upon decreasing $[O_3]$: $O_{3 (gas)} + e^{-} \rightarrow O_{(ad)}^{-} + O_{2 (gas)}^{-}$ $2O_{(ad)}^{-} \rightarrow O_{2 (gas)}^{-} + 2e^{-}$ Resistivity increase Resistivity decrease

Needs elevated temperature (250-300°C) to bring energy allowing oxydo-reduction reactions.

Drawbacks : high power consumption, material ageing, no flexible substrate

 \rightarrow UV illumination creates free charge carriers allowing lower operating temperature

8/19

II. Thin film deposition and crystalline structure

WO₃ thin film deposition

Film Deposition

Reactive RF magnetron sputtering Argon/oxygen ratio → 3:2 ; 1:1; 2:3 Thin layer : 50nm

Annealing
 On plate 2h at 400°C in air,

 EDXS measurements (after annealing)
 Identical chemical composition for all 3 samples
 Quasi stoichiometric : 77%O ; 23%W

XRD diffractogram of WO₃ thin film

- Analyse of transducer without and with WO₃ films
- Comparison between 3 samples with different Ar/O₂ deposition ratio

* Peaks correspond to the ones on reference spectra (Pt and Si/SiO2) # and o peaks match Monoclinic WO₃ structure # (002) and o (200) lowest peaks vary with Ar/O_2 ratio \rightarrow grain growth influence

III. Sensor electrical characterization

Sensor test bench

CNTS

UV illumination effect

 Illumination of WO₃ with photon energy higher than indirect band gap (2.6-2.8 eV) → creation of free electrons → reaction

 O_3 gas reacts even at low temperature \rightarrow response amplitude remains low

DE TOULON

Need to improve sensor response ... !!!

UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Sensor response for different sputtering parameters

- ✓ O_3 detection for all 3 samples at 50°C
- ✓ Best response for Ar/O_2 ratio of 3:2

No stabilization in 60s O_3 exposure nor complete desorption in 240s \rightarrow slow process compared to high temperature operating

✓ 30, 65 and 120 ppb O_3 detected for all samples

Under UV and low temperature : best response for Ar/O₂ ratio of 3:2

15/19

Under Dark and high temperature : best response for Ar/O₂ ratio of 1:1

IV. Conclusion

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Ø

 Ar/O_2 sputtering gas ratio affects the film microstructure

Optimization of sensor performance through Ar/O₂ ratio during sputtering

- ✓ UV illumination enables low temperature operating
 → Power consumption decreases
- ✓ Best results under UV for Ar/O_2 ratio of 3:2
- \checkmark O₃ detection for 30, 65 and 120ppb

Ozone decomposition on WO₃ remains a slow process

- No response stabilization
- Long response and recovery time
- Small response amplitude

For better understanding \rightarrow complementary measurements of microstructure

Acknowledgments

IM2NP, MCI and RDI Teams

Ph.D Student **OCCELLI** Clément

Dr. BERNARDINI Sandrine

18/19

Master Student LE ROY Ludovic

Dr. FIORIDO Tomas

Pr SEGUIN Jean-Luc

Dr. PERRIN-PELLIGRINO Carine

Contact authors:

clement.occelli@im2np.fr sandrine.bernardini@im2np.fr tomas.fiorido@im2np.fr

Institut Matériaux Microélectronique Nanosciences Provence

Thank you for your attention

Relier le fondamental aux applications dans nos domaines d'expertise

www.im2np.fr