
On Compressing Time-Evolving Networks

Sudhindra Gopal Krishna, Sridhar Radhakrishnan, Michael A. Nelson, Amlan Chatterjee, and
Chandra N. Sekharan

Presenter: Sudhindra Gopal Krishna

sudhi@ou.edu
School of Computer Science, The University of Oklahoma, Norman, OK

1

Presenter’s Bio
• Sudhindra Gopal Krishna is a Ph.D. Candidate in the School of

Computer Science at the University of Oklahoma.
• Sudhindra graduated with a Master's Degree in Computer Science

in Spring 2017.
• Current research interests:

• Algorithms, Data Compression, Graphs, Network Science.

2

Contents
• Introduction
• Background
• Graph Representation
• Research Methodology
• Experimental Results
• Conclusion
• Future Work

3

Introduction
• A Graph (aka Network) is a structure represented as a set of nodes (or vertices)

connected by a set of links (or edges).
• A Graph is formally represented as G = 𝑉, 𝐸 .

• 𝑉 represents a non-empty set of vertices, and
• 𝐸 represents a set of edges.

• Each edge in the graph is represented as a tuple (𝑢, 𝑣).

4

Time-Evolving Graphs

• Time-evolving graphs can be stored as
an extension to the static graphs.
• By adding the third and the fourth

dimensions, which are the start time (𝑡!),
and the end time (𝑡").

• Formal notation of a time-evolving graph
is 𝐺! = 𝑉!, 𝐸!, 𝜏 ,
• where 𝑖 is a time-frame, and
• 𝜏 is a time interval (𝑡! , 𝑡").

• So, a link in a time-evolving graph is a 4-
tuple 𝑢, 𝑣, 𝑡!, 𝑡" .

• This is often seen in social networks.

5

Massive Graphs
• The graphs that do not fit into

the memory for analysis are
referred to as massive graphs.
• In reality, these graphs are very

sparse.
• Where Sparsity is a measure of

how many links exist out of all
possible links in the graph.

6https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/

Storage Solution
• One way to address the issue of storing

massive graph is to compress the data.
• There are two ways to compress a graph

• Graph (Matrix) based compression, and
• Node (Row-by-Row) based compression.

• All the algorithms in this paper are based on
row-by-row compression.

7

RAM 8 GB

https://colah.github.io/posts/2014-02-Fanfiction-Graphs-PageRank/img/graph-HP-blank.png

Friendster graph ~11 GB

The Friendster graph
consists of 65 million
nodes, and 1.8 billion
edges.

https://colah.github.io/posts/2014-02-Fanfiction-Graphs-PageRank/img/graph-HP-blank.png

Background – Node Based Compression
• Time-evolving graphs can also be stored as a series of static graphs called

snapshots.
• Row-by-Row compression for static graphs,

• Compressed Sparse Row (CSR) [1] was introduced in 1976, is one of the most common data
structures used in representing a graph.

• BackLinks Compression (BLC) [2] was introduced in 2009, is a modified web-graph
compression method developed by Boldi and Vigna.

• Compressed Binary Tree (CBT) [3] was introduced in 2017, is a state-of-the-art structure,
which eliminated the need for any intermediate structure to compress the graph.

• This paper introduces CSR for time-evolving graphs, also the combinations of
CSR and CBT.

8

[1] R. A. Snay, “Reducing the profile of sparse symmetric matrices,” Bulletin Ge ́ode ́sique, vol. 50, no. 4, pp. 341–352, 1976.

[2] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan, “On compressing social networks,” in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining,
KDD ’09, (New York, NY, USA), p. 219–228, Association for Computing Machinery, 2009.

[3] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. Sekharan, “Queryable Compression on Streaming Social Networks,” in Big Data (Big Data), 2017 IEEE International Conference on, IEEE BigData ’17, IEEE Computer Society, 2017.

Background – Matrix Based Compression
• Matrix based compression for time-evolving graphs,

• In 2016, Caro et al. developed 𝑐𝑘# − 𝑡𝑟𝑒𝑒, by adapting the concepts of quadtree compression.
• Evelog is a compressed adjacency log structure, based on log of events strategy.
• Other legacy time-evolving compressions are CAS, CET, and TGCSA.

• For this paper, only 𝑐𝑘' − 𝑡𝑟𝑒𝑒 the matrix-based compression is considered for
comparison purposes, as 𝑐𝑘' − 𝑡𝑟𝑒𝑒 has shown better results than all the other
matrix-based compression.

9D. Caro, M. A. Rodriguez, N. R. Brisaboa, and A. Farina, “Compressed kd-tree for temporal graphs,” Knowl. Inf. Syst., vol. 49, pp. 553–595, Nov. 2016.

Compressed Sparse Row (CSR)

10

• Here is an example of a
Compressed Sparse Row
(CSR) structure for a static
undirected graph.
• In this structure it is sufficient

to store only the upper
triangular part of the matrix
shown in green.

R. A. Snay, “Reducing the profile of sparse symmetric matrices,” Bulletin Ge ́ode ́sique, vol. 50, no. 4, pp. 341–352, 1976.

Compressed Binary Tree (CBT)

11

• An example of a Compressed
Binary Tree (CBT) structure
for a static undirected graph.
• In this structure it is sufficient

to store only the upper
triangular part of the matrix
shown in green.

M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. Sekharan, “Queryable Compression on Streaming Social Networks,” in Big Data (Big Data),
2017 IEEE International Conference on, IEEE BigData ’17, IEEE Computer Society, 2017.

Time-evolving graph
• A time-evolving graph can be represented as several snapshots of a static graph.

• Therefore, each node in the graph has to store two sets of information,
• One is the neighborhood array, and
• Second, a time array to keep track of changes between each snapshot.

• Changes at each snapshot can either be,
• Addition of an edge, or
• Deletion of an edge, or
• No changes at all.

12

Representation of Time-Evolving Graphs
• For example,

• Consider node 0, which is the first row in every snapshot.
• The time-frame array is as follows:

• Since the time instants are finite, for most of the examples, the range of the time-
frames does not exceed more than 10,000.
• Hence, the time array is small compared to the entire graph.

13

Node 0 1 1 0 0 1

Compression Technique
• In this paper, the time-array and the neighborhood-array are compressed in one of

two methods.
• Compressed Sparse Row (CSR), or
• Compressed Binary Tree (CBT).

• Either of the two methods can be chose depending up on the size and the nature of
the array.
• These arrays are encoded as a series of bits.
• For the CSR, this encoding method is referred to as bit-packing.

14

Bit-Packing Algorithm
• Each number in the array is represented as bits.
• Number of bits required to store each number depends on the largest number in

the array.
• Then the bits are stored as an unsigned bit array.

• A memory location can hold up-to 32 bits anymore than 32, the number is split to
fit the current memory location and rest of the bits are stored in the following
memory location.

Unsigned int 1 3 5 10 16 26
Unsigned bit 00001 00011 00101 01010 100000 11010 00

Unsigned int 1 3 5 10 16 26 30

Unsigned bit
00001 00011 00101 01010 10000 11010 11
110 00000 00000 00000 00000 00000 0000

15

Input Structure
• By the definition of the time-evolving graph, each link/edge is represented as a 4-

tuple 𝑢, 𝑣, 𝑡(, 𝑡) .
• But the input can be reduced to a 3-tuple 𝑢, 𝑣, 𝑡 .
• Every odd occurrence of the triples indicates the link is active, and every even

occurrence indicates otherwise.
• The input to the graph (edgelist) is first sorted with respect to the time-frames.
• For each time-frame, the edges are sorted with respect to the node number.

16

The Combinations
• Because of the two independent arrays for each node, the arrays can be stored in

either be stored using CSR or CBT.
• The paper evaluates all four combinations to store the graph.
• Novel CSR – CSR: Both the time-array and the neighborhood arrays are stored

using CSR.
• Novel CSR – CBT: The time-array is stored as CSR, and the neighborhood array

is stored as CBT.
• Novel CBT – CSR: The time-array is stored as CBT, and the neighborhood array

is stored as CSR.
• CBT – CBT: Both the time-array and the neighborhood arrays are stored using

CBT.

17

Graphical Representation of CSR-CSR

18

CSR as unsinged char:

G@T!
01101100010010001000
100001001100001010100010010101110000100110000101010

G@T"
000100101 100010100 110000101010001

G@T#
100010001 100100010 0010111000010101000

G@T$
0000100011000001 1111 1100111011101001

Querying operations
• Two querying operations are performed on all the algorithm on 1000 random

chosen vertices.
• Given a node, and

• A time 𝑡!, a neighborhood query fetches all the neighbors of that node at time 𝑡!.
• An interval 𝑡! to 𝑡" (inclusive), a neighborhood query fetches all the neighbors of that node

between time 𝑡! and time 𝑡".

• Given nodes (𝑢, 𝑣), and
• A time 𝑡!, the edge existence method returns if the edge is active/inactive at time 𝑡!.
• An interval 𝑡! to 𝑡" (inclusive), the edge existence method returns if the edge is active/inactive

between time 𝑡! and time 𝑡".

19

Compression Result

20

Time
CSR_CSR

Time
CSR_CBT

Time
CBT_CSR

Time CBT-
CBT Time ckd

CommNet 10.25 56.19 55.8 65.5 119
PowerLaw 18.94 162.23 141.21 149 254
Flickr-Days 34.16 208.39 120.015 179 235
Wiki-edits 1158 2042.88 1126.85 3081 2059
Yahoo Netflow 1372 6770.71 1874.95 3506 5471

1

10

100

1000

10000

Ti
m

e
in

 lo
g(

se
co

nd
s)

Time required to compress each graph

.txt CSR - CSR CSR-CBT CBT - CSR CBT-CBT ck^d-tree
CommNet 271.6 34 16 16 15.9 30
PowerLaw 546.9 80 80 70 73.8 128
Flickr-Days 860 107 73.8 82 73.8 89
Wiki-edits 5836.8 2048 1433.6 2048 1372.16 1536
Yahoo-Netflow 19456 4403.2 2969.6 4300.8 3061.76 2560

1

10

100

1000

10000

Si
ze

 in
 lo

ga
rit

hm
ic

 sc
al

e

Space required by the compression algorithms to store
each graph in megabytes

Experimental Results
Graphs Nodes Contacts Time Frames neigh_CSR_Ti neigh_CSR_Ti_Tj Edge exists_CSR_Ti Edge exists_CSR_Ti -Tj

CommNet 10000 19061571 10001 0.78 ± 0.005 0.93 ± 0.049 0.78 ± 0.001 0.82 ± 0.002
PowerLaw 1000000 32280816 1001 2.07 ± 0.006 2.10 ± 0.012 2.06 ± 0.011 2.08 ± 0.06
Flickr-Days 2585570 33140018 135 1.31 ± 0.02 2.08 ± 0.31 1.31 ± 0.013 2.21 ± 0.2
Wiki-edits 21504191 266769613 134075025 0.40 ± 0.007 0.403 ± 0.001 0.39 ± 0.08 0.39 ± 0.008

Yahoo Netflow 32904819 1123508740 58735 2.19 ±0.45 1.51 ± 0.06 1.38 ±0.014 1.52 ±0.042

Graphs Nodes Contacts Time Frames neigh_TCBT_Ti neigh_TCBT_Ti_Tj Edge exists_CBT_Ti Edge exists_CBT_Ti-Tj
CommNet 10000 19061571 10001 1.33 ± 1.44 1.43 ± 0.47 0.39 ± 0.66 0.39 ± 0.55
PowerLaw 1000000 32280816 1001 2.99 ± 0.55 5.70 ± 1.05 0.64 ± 0.12 1.6 ± 0.03
Flickr-Days 2585570 33140018 135 11.29 ± 8.52 38.49 ± 8.34 4.23 ± 2.81 5.44 ± 10.11
Wiki-edits 21504191 266769613 134075025 1.24, 1.911 1.42, 2.12 1.15, 0.18 1.15, 0.19

Yahoo Netflow 32904819 1123508740 58735 43.13, 0.263 51.21, 4.67 30.32, 2.36 31.2, 5.37

Graphs Nodes Contacts Time Frames neigh_CKD_Ti neigh_CKD_Ti_Tj Edge exists_CKD_Ti Edge exists_CKD_Ti -Tj
CommNet 10000 19061571 10001 48.89 ± 11.56 64.46 ± 0.43 49.6 ± 3.4 49.7 ± 0.24
PowerLaw 1000000 32280816 1001 374.23 ± 50.72 374.64 ± 50.66 216.0 ± 5.3 226.13 ± 14.38
Flickr-Days 2585570 33140018 135 35.34 ± 10.39 45.22 ± 5.78 35.2 ± 1.2 37.2 ± 2.3
Wiki-edits 21504191 266769613 134075025 3.0 ± 3.0 4.39 ± 0.72 2.62 ± 1.7 2.98 ± 0.25

Yahoo Netflow 32904819 1123508740 58735 231.9 ± 82.1 254 ± 92.06 211.8 ± 89.0 212.32 ± 71

All the experiments were run on an Intel(R) Xeon(R) CPU E5520 @ 2.27GHz (16 Cores) with 64 GB of RAM,
and the programs are written in GNU C/C++.

21

Conclusion
• Valuable insights can be gained from the analysis of time-evolving graphs.
• Our techniques show a significant reduction in memory requirement.
• All algorithms are tested on real-world datasets and show significant

improvements over existing techniques.
• Our future work would focus on exploiting the parallelism in improving the

compression techniques' timings in a broader domain of graphs..

22

Thank you.
Question?

23

